Hybrid Static-Dynamic Analysis for
Statically Bounded Region Serializability

Aritra Sengupta,

Swarnendu Biswas, bI—HHd
Minjia Zhang, U%E

Michael D. Bond

and

PURDUE
Milind Kulkarni _

ASPLOS 2015, ISTANBUL, TURKEY

Programming Language
Semantics? .

®* Data Races

C++ no guarantee of semantics — “catch-fire”

semantics

Java provides weak semantics

Weak Semantics

A a = null;
Tl T2
boolean init = false;

a = new A(); if (init)
init = true; a.field++;

Weak Semantics

T1 No data T2

dependence

a = new Ai)/ if (init)

init = true; a.field++;

Weak Semantics

A a = null;
Tl T2
boolean init = false;

g::> a = new A(); if (init)
init = true; a.field++;

Weak Semantics

T1 T2

init = true;
if (init)
a.field++;

a =new A();

Weak Semantics

T Null

dereference

init = true; O
if (init) O
o
a.field++;

a =new A();

DRFO

* Atomicity of synchronization-free regions for

data-race-free programs
* Data races - no semantics

* C++, Java follow variants of DRFO

— Adve and Hill, ISCA, 1990

Need for Stronger Memory
Models

“The 1nability to define reasonable semantics for

programs with data races 1s not just a theoretical
shortcoming, but a fundamental hole in the foundation
of our languages and systems...”

* Give better semantics to programs with data races
* Stronger memory models

— Adve and Boehm, CACM, 2010

Sequential Consistency (SC)

Shared memory accesses interleave arbitrarily while

each thread maintains program order

Sequential Consistency

Sequential Consistency

An Example Program Under SC

int pos =0
int [| buffer| 0 0

T1 T2

buffer[pos++]=5 buffer[pos++] = 6

An Example Program Under SC

int pos =0
int [| buffer| 0 0

T1 T2
t1 = pos t2 = pos
buffer [t1] =5 buffer [t2] =6
tl=t1+1 t2=t2+1

PoOS = t1 pos = 2

An Example Program Under SC

int pos =0
int [| buffer| 0 0

T1 T2

tl = pos t2 = pos Time
buffer [t1] =5

——) u ffer [t2] = 6
t1=t1+1

2=t2+1
— P 05 = {2

pos = tl

An Example Program Under SC

int pos =0

int [| buffer| 0

0

T1

buffer

T2

Time

An Example Program Under SC

int pos =0
int [| buffer| 0 0

T1 T2

buffer[pos++]=5 buffer[pos++] =

pos ==2 \/

buffer buffer
5 6

An Example Program Under SC

int pos =0
int [| buffer| 0 0

T1 T2

buffer[pos++]=5 buffer[pos++] =6

SC execution

Programmer Assumption

Atomicity of high-level

operations

Can SC Eliminate Common
Concurrency Bugs?

“...programmers do not reason about correctness of parallel
code in terms of interleavings of individual memory

accesses...”

* SC does not prevent common concurrency bugs

* Data races dangerous even under SC

— Adve and Boehm, CACM 2010

Run-time cost vs Strength

Synchronization-free

region serializability'

7

o

O

o SC

E

g

7 DRFO

>
Strength

1. Ouyang et al. ... and region serializability for all. In HotPar, 2013.

Run-time cost vs Strength

Synchronization-free

region serializability'

PR N
o e
& *
') .
» [
[[]
SC ’ .
* L4
0. ‘0
...--‘

Run-time cost

DRFO

Strength

1. Ouyang et al. ... and region serializability for all. In HotPar, 2013.

Run-time cost vs Strength

Run-time cost

DRFO

SC

Synchronization-free

region serializability’

Statically Bounded Region
Serializability

Strength

Contribution
9

-
\D EnfoRSer: An analysis to
enforce SBRS practically

Evaluation: Low run-time cost,

eliminates real bugs Synchronization-free

/| region serializability’
\

Statically Bounded Region
SC Serializability

Run-time cost

DRFO

Strength

New Memory Model:
Statically Bounded Region
Serializability (SBRS)

Program Execution Behaviors

Statically Bounded Region

Serializability

Statically Bounded Region
Serializability (SBRS)

Synchronization
operations
acq(lock) Method calls
1 Loop backedges

methodCall()

l |
T~ l

rel(lock)

Statically Bounded Region
Serializability (SBRS)

\
|
1|
]
=
|
1
|
/
h

Statically Bounded Region
Serializability (SBRS)
)

/ Loop

backedges

Staticallyand | « = === === = =of = = = o

dynamically 7/
bounded |

w

I

-_ e e e e e e - -

Under SBRS

pos =0

buffer| O 0
T1 T2

buffer[pos++]=5 buffer[pos++] = 6

Under SBRS

pos =0
buffer| 0 0
T1 T2
t1 = pos t2 = pos
buffer [t1] =5 buffer [t2] =6
t1=tl+1 t2=t2+1

PoOS = t1 pos = 2

Under SBRS

pos =0
buffer| 0 0
T1 T2
(t1 = pos)
buffer [t1] =5
t1=tl1+1
\pos =tl Y, b ~
t1 = pos

L buffer [t1] =6
P"ﬂ? (1=t1+1
buffer] s | 6
os = t1
N\ Y,

Under SBRS

pos =0
buffer| 0 0
T1 T2
/tl = pos A
buffer [t1] =6
tl=t1+1
pos = tl
(t1 = pos) ~

buffer [t1] =5
tl=t1+1 pos ==2

— buffer, 6 | 5
\pos t1 Y,

Bug Elimination

xt+=42; . \
ﬁ read—modify—write

1f (O = Illlll) check before use

{...= O.f;}\l

|
Iti-variabl
buffer[pos++] — Val;\‘ multi va.rla e
\ operation /

EnfoRSer: A Hybrid Static-
Dynamic Analysis to Enforce
SBRS

EnfoRSer, an efficient

enforcement of SBRS
Tra::fli.lznﬂ::ions + Runtime Enforcement

Two-phase Locking

Basic Mechanism

-

~

Basic Mechanism

/ a Z Write lock
Y=

Basic Mechanism

Basic Mechanism

/a I
Y=\

Basic Mechanism

Basic Mechanism

/a I

Basic Mechanism

Basic Mechanism

~
\\\\\\
~ ,/
’

/\\

Basic Mechanism

T1 * Lightweight reader- T2
writer locks?

/ * Biased synchronization
* Lose ownership while

acquiring locks

a Deadlock a
=

2. Bond et al. Octet: Capturing and Controlling Cross-Thread Dependences Efficiently. In OOPSLA, 2013.

Basic Mechanism

Basic Mechanism

/7 \ [
=g N

- [Fﬁ_;
a
b
o

N

\ 7/
\/

/1

Basic Mechanism

Challenges in Basic Mechanism

EnfoRSer Atomicity
Transformations

* Idempotent: Defer stores until all locks

are acquired

* Speculation: Execute stores speculatively

and roll back 1n case of a conflict

I[dempotent Transformation

e p
i
o
o

x=

I[dempotence Transformation

s N
o
o
o
x-
4

I[dempotence Transformation

4 N
o
=
=Y
\ ﬁ / Stores deferred
v v

I[dempotence Mechanism
" N

P \
/ a \ % Conflict
A | 7
)X : KGN
N
N /

I[dempotence Mechanism

4 N —
Side-effect free
>_/

I[dempotence Mechanism

I[dempotence Challenges

4 N
o
o
o

N

I[dempotence Challenges

Loads data / ﬁ \
dependent on
stores - M
/

N
| =Y
\

S

I[dempotence Challenges
4)

Aliasing between ﬁ

loads and stores

. a

\ o
Data dependence? \ a

Speculation Transformation

4 N

x
1

1
<

-
o

Speculation Transformation

/ \/ Backup store values
A

Generate roll-back code

Speculation Mechanism

old_ X=X
X = Conflict
—1
Aa/_é Execute roll-back code

Speculation Mechanism

- =

/ Sl N
4 ﬁ) \
old_ X=X \
X =) Conflict \
A \
X - Kl ,
=Y \ I
o ‘e |
old X=2 | N '
_ Z~ J g Z=old Z : f
X =old_X

Speculation Mechanism

old X=X
X=
=Y
All locks acquired
old X=2 /
7= 4)
\ B Z=old Z

Speculation Challenges

a a8
Y= X =
\)\/
fa_\

=7

-
- J

J

Speculation Challenges

4 a)
Y=
/ \ \
Executed store - ~N

Speculation Challenges

/\ j
\ Conflict
Executed store A

Similar to Software
Transactional Memory (STM)?

* Idempotent approach similar to STMs that defer

stores until a transaction commits

* Speculation approach similar to STMs that
execute stores but undo them 1f a transaction

needs to abort

Similar to Software

Transac‘émﬂl—“m“"—%'l‘ M)?

* Idempote; i that defer
stores unt EnfoRSer

* Speculati{ Provides atomicity f that undo
stores bef of statically

bounded regions

more efficiently!

€)

Similar to Software

Transac‘émﬂl—“m“"—%'l‘ M)?

* Idempote;

stores unt

EnfoRSer

* Speculati{ Provides atomicity

stores bet

C

of statically
bounded regions

more efficiently!

; that defer

S that undo

Bounded regions:
efficient code
generation

Short regions:
conservative
conflict detection

Implementation and
Evaluation

Implementation

* Developed 1n Jikes RVM 3.1.3
* Code publicly available on Jikes RVM Research

Archive

Experimental Methodology

* Benchmarks
DaCapo 2006, 9.12-bach

Fixed-workload versions of SPEC;bb2000 and
SPECjbb2005

* Platform

AMD Opteron system: 32 cores

Whole-Program Static Analysis

Remove instrumentation from data-race-free accesses

[Naik et al.’s 2006 race detection algorithm, Chord]

~
/

QO |
=
e %e Il %
= +
-
m S %7
O (4 Q\A\
= 5 %
o)
e %
O = Y
+— <P)
P m m Qw\
D) e o e 0 %,
o (=))
m /0 & 7
oy] S ma
= o (g\| | sOA\
[= en %,
m e o,oo
- u %,
s e s %S
L -
©
e 9,
P P — %
\po+
9,
Y
O - o,
)
- o 7
(1] e %
\Q.b
¢
] b&,
T T T QWp.v
o o o o o o o o ®
< (@] o o0 (e} < N
— — —

INAL PAYIPOUIUN JOAO PRAYISAO 9

Performance

Run-time
&

EnfoRSer

W Idempotent

I
N
®

T

average

27% overhead on
Q

W Speculation

T
&

llﬂlilll
)
@6

T

o
&

T
A
Q/’b

©
2
&

140

T T T
o o o o o o o

N o o0 (o] < (@]
— —

INAL PAYIPOUIUN JOAO PRAYISAO 9

Performance

Run-time

EnfoRSer

-~

~

pjbb2005, over 100%

T

T

T

T

overhead
Cao et al., WoDet 2014

&

T

H

140

T T T
o o o o o o o

N o o0 (o] < (@]
— —

INAL PAYIPOUIUN JOAO PRAYISAO 9

EnfoRSer: Run-time Performance

g)

140
53% overhead on average

|
120 ldempotent (speculation via log)

W Speculation \

100

Speculation via log

(o)
o

D
o

I
o
1

N
o
1

% overhead over unmodified JVM

mlli FI T el |

5 2

Q/ ~Q
.Q° 'z> K o < C ’b
& & e’b‘ & & & & Q(Q «‘*\0 &F &
Q AN \\}(’) (2 SN \0 \0(9 (90 Q\ Q\

Q ¢) Q
Q >

% overhead over unmodified JVM

EnfoRSer: Run-time Performance

with and without static race detection

70

60

50

40

30
20 -
10 -

0 .

I

geomean
W race det

geomean
w/o race det

® [dempotent

W Speculation

Speculation via log

Evaluation: Concurrency
Errors Avoidance

SBRS’s potential to eliminate concurrency

bugs exposed on relaxed memory models

Avoiding Concurrency Errors

gl =HNN =EEE 2=

orro M) Isc s

hsqldb6 I Infinite loop | Correct Correct
sunflow9 Null po.inter I Correct Correct
exception
jbb2000 | Corrupt output I Corrupt output Correct
jbb2000 Infinite loop I Correct Correct
sor I Infinite loop I Correct Correct
lufact ! Infinite loop [Correct Correct
moldyn ! Infinite loop | correct Correct
raytracer ! Fails validation) Fails validation Correct

___’

AM = Adversarial Memory, Flanagan and Freund, PLDI 2010

Avoiding Concurrency Errors

S oRroaw)sc

hsqldb6 Infinite loop Correct I Correct
sunflow9 Null pointer | Correct I Correct
exception
jbb2000 Corrupt output I Corrupt output I Correct
jbb2000 Infinite loop I Correct I Correct
sor Infinite loop I Correct I Correct
lufact Infinite loop | Correct ICorrect
moldyn Infinite loop | correct | Correct
raytracer Fails validation \ Fails validation) correct

\———’

AM = Adversarial Memory, Flanagan and Freund, PLDI 2010

Avoiding Concurrency Errors

-

hsqldk Correct] Correct
sunfloj Correct] Correct I
I I
jbb20(Corrupt output I Correct]
jpb2o(Avoids all the errors |correct | Correct]
sor exposed by AM Correct I Correct I
lufact Correct Correct I
moldyj| Correct | Correct I
raytra Fails validation I\Correct]
—— =
G)nagan and Freund, PLDI 2010

Related Work

Requires customized

hardware

Checks conflicts in bounded region

DRFx, Marino et al., PLDI 2010

Checks conflicts in synchronization-free regions ———
Conflict Exceptions, Lucia et al., ISCA 2010

Enforces atomicity of bounded regions Requires additional

Bulk C 1ler, Ahn et al., MICRO 2009
u ompiier ncecta cores

Enforces atomicity of synchronization free regions

... and region serializability for all, Ouyang et al., HotPar 2013

Conclusion

&

-
\D EnfoRSer: An analysis to
enforce SBRS practically

Evaluation: Low run-time cost,

eliminates real bugs Synchronization-free

/| region serializability’
\

Statically Bounded Region

SC .
Serializability

Run-time cost

DRFO

Strength

