
 Aritra Sengupta,
 Swarnendu Biswas,
 Minjia Zhang,
 Michael D. Bond
 and
 Milind Kulkarni

ASPLOS 2015, ISTANBUL, TURKEY

Hybrid Static-Dynamic Analysis for
Statically Bounded Region Serializability

Programming Language
Semantics?

•Data Races

• C++ no guarantee of semantics – “catch-fire”
semantics

• Java provides weak semantics

Weak Semantics

 T1 T2

a = new A();
init = true;

 if (init)
 a.field++;

A a = null;
boolean init = false;

Weak Semantics

 T1 T2

a = new A();

init = true;

if (init)

 a.field++;

No data
dependence

Weak Semantics

 T1 T2

a = new A();

init = true;

 if (init)

 a.field++;

A a = null;
boolean init = false;

Weak Semantics

 T1 T2

init = true;

a = new A();

if (init)
 a.field++;

Weak Semantics

 T1 T2

init = true;

a = new A();

if (init)
 a.field++;

Null
dereference

DRF0

• Atomicity of synchronization-free regions for
data-race-free programs

• Data races - no semantics

• C++, Java follow variants of DRF0

– Adve and Hill, ISCA, 1990

Need for Stronger Memory
Models

“The inability to define reasonable semantics for
programs with data races is not just a theoretical
shortcoming, but a fundamental hole in the foundation
of our languages and systems„”

• Give better semantics to programs with data races

• Stronger memory models

 – Adve and Boehm, CACM, 2010

Sequential Consistency (SC)

Shared memory accesses interleave arbitrarily while
each thread maintains program order

Sequential Consistency

DRF0 Sequential Consistency

An Example Program Under SC

 T1 T2

buffer[pos++]= 5 buffer[pos++] = 6

int pos = 0
int [] buffer

0 0

An Example Program Under SC

 T1 T2

t1 = pos
buffer [t1] = 5
 t1 = t1 + 1
pos = t1

t2 = pos
buffer [t2] = 6
t2 = t2 + 1
pos = t2

0 0

int pos = 0
int [] buffer

An Example Program Under SC

 T1 T2

t1 = pos
buffer [t1] = 5

t1 = t1 + 1

pos = t1

t2 = pos

buffer [t2] = 6

t2 = t2 + 1
pos = t2

Time

int pos = 0
int [] buffer

0 0

An Example Program Under SC

 T1 T2

t1 = pos
buffer [t1] = 5

t1 = t1 + 1

pos = t1

t2 = pos

buffer [t2] = 6

t2 = t2 + 1
pos = t2

Time

 pos = = 1

 buffer

6 0

int pos = 0
int [] buffer

0 0

An Example Program Under SC

 T1 T2

buffer[pos++]= 5 buffer[pos++] = 6 pos = = 1
 buffer

 pos = = 2
 buffer

 buffer

6 0

5 6 6 5

int pos = 0
int [] buffer

0 0

An Example Program Under SC

 T1 T2

buffer[pos++]= 5 buffer[pos++] = 6

SC execution

 pos = = 1
 buffer

6 0

int pos = 0
int [] buffer

0 0

Programmer Assumption

Atomicity of high-level

operations

Can SC Eliminate Common
Concurrency Bugs?

“...programmers do not reason about correctness of parallel

code in terms of interleavings of individual memory
accesses„”

• SC does not prevent common concurrency bugs

• Data races dangerous even under SC

 – Adve and Boehm, CACM 2010

Run-time cost vs Strength
R

un
-t

im
e

co
st

Strength
1. Ouyang et al. ... and region serializability for all. In HotPar, 2013.

DRF0

Synchronization-free
region serializability1

SC

Run-time cost vs Strength
R

un
-t

im
e

co
st

Strength
1. Ouyang et al. ... and region serializability for all. In HotPar, 2013.

DRF0

SC

Synchronization-free
region serializability1

Run-time cost vs Strength
R

un
-t

im
e

co
st

Strength

Statically Bounded Region

Serializability

Contribution
R

un
-t

im
e

co
st

Strength

Statically Bounded Region

Serializability

EnfoRSer: An analysis to
enforce SBRS practically

Evaluation: Low run-time cost,
eliminates real bugs

New Memory Model:
Statically Bounded Region
Serializability (SBRS)

Program Execution Behaviors

Statically Bounded Region
Serializability SC DRF0

Statically Bounded Region
Serializability (SBRS)

rel(lock)

acq(lock)

methodCall()

Synchronization
operations
Method calls
Loop backedges

Statically Bounded Region
Serializability (SBRS)

rel(lock)

acq(lock)

methodCall()

Statically Bounded Region
Serializability (SBRS)

Statically and
dynamically

bounded

Loop
backedges

Under SBRS

 T1 T2

buffer[pos++]= 5 buffer[pos++] = 6

 pos = 0
 buffer

0 0

Under SBRS

 T1 T2

t1 = pos
buffer [t1] = 5
 t1 = t1 + 1
pos = t1

t2 = pos
buffer [t2] = 6
t2 = t2 + 1
pos = t2

 pos = 0
 buffer

0 0

Under SBRS

 T1 T2

t1 = pos
buffer [t1] = 5
 t1 = t1 + 1
pos = t1

t1 = pos
buffer [t1] = 6
 t1 = t1 + 1
pos = t1

 pos = = 2
buffer

 pos = 0
 buffer

0 0

5 6

Under SBRS

 T1 T2

t1 = pos
buffer [t1] = 5
 t1 = t1 + 1
pos = t1

t1 = pos
buffer [t1] = 6
 t1 = t1 + 1
pos = t1

 pos = = 2
buffer

6 5

 pos = 0
 buffer

0 0

Bug Elimination

x+= 42;

if (o != null)
 {. . .= o.f; }

buffer[pos++] = val;

 read–modify–write

 check before use

 multi-variable
operation

EnfoRSer: A Hybrid Static-
Dynamic Analysis to Enforce

SBRS

EnfoRSer, an efficient
enforcement of SBRS

Compiler
Transformations

Runtime Enforcement

Two-phase Locking

Basic Mechanism

Y =

= X

Y =

Basic Mechanism

Y =

= X

Y =

Read lock

Write lock

Basic Mechanism

Y =

= X

Y =

Basic Mechanism

Y =

= X

Y =

Program access

Basic Mechanism

Y =

= X

Y =

Ownership transferred

Basic Mechanism

X =

= X

Y =

Basic Mechanism

Y =

= X

Y =

X =

= Y

Z =

T1 T2

Conflict

Basic Mechanism

Y =

= X

Y =

X =

= Y

Z =

T1 T2

Deadlock

Basic Mechanism

Y =

= X

Y =

X =

= Y

Z =

T1 T2

Deadlock

• Lightweight reader-

writer locks2
• Biased synchronization
• Lose ownership while

acquiring locks

2. Bond et al. Octet: Capturing and Controlling Cross-Thread Dependences Efficiently. In OOPSLA, 2013.

Basic Mechanism

Y =

= X

Y =

X =

= Y

Z =

T1 T2

Ownership transferred

Two-phase locking
violated

Basic Mechanism

Y =

= X

Y =

X =

= Y

Z =

T1 T2

Basic Mechanism

Locks acquired

Y =

= X

Y =

Challenges in Basic Mechanism

Y =

= X

Y =

Stores executed

EnfoRSer Atomicity
Transformations

• Idempotent: Defer stores until all locks
are acquired

•Speculation: Execute stores speculatively
and roll back in case of a conflict

Idempotent Transformation

X =

= Y

X =

Idempotence Transformation

X =

= Y

X =

Idempotence Transformation

…

= Y

…

X =

…

X =

Stores deferred

Idempotence Mechanism

…

= Y

…

X =

…

X =

Conflict

Idempotence Mechanism

…

= Y

…

X =

…

X =

Side-effect free

Idempotence Mechanism

…

= Y

…

X =

…

X =

Execute stores

Idempotence Challenges

= Y

X =

X =

= X

Idempotence Challenges

= Y

…

X =

= X

Loads data
dependent on

stores

Idempotence Challenges

= Y

…

X =

= Z

Aliasing between
loads and stores

Data dependence?

Speculation Transformation

X =

= Y

X =

Speculation Transformation

X =

= Y

Z = Z = old_Z

X = old_X

 old_X = X

 old_X = Z

Backup store values

Generate roll-back code

Speculation Mechanism

Z = old_Z

X = old_X

X =

= Y

Z =

 old_X = X

 old_X = Z

Conflict

Execute roll-back code

Speculation Mechanism

Z = old_Z

X = old_X

X =

= Y

Z =

 old_X = X

 old_X = Z

Conflict

Speculation Mechanism

Z = old_Z

X =

= Y

Z =

 old_X = X

 old_X = Z

All locks acquired

X = old_X

Speculation Challenges

= Z

X = Y =

Speculation Challenges

= Z

Y =

Executed store

Speculation Challenges

= Z

Y =

Executed store

Conflict

Y = old_Y

X = old_X

Similar to Software
Transactional Memory (STM)?
• Idempotent approach similar to STMs that defer

stores until a transaction commits

• Speculation approach similar to STMs that
execute stores but undo them if a transaction
needs to abort

Similar to Software
Transactional Memory (STM)?
• Idempotent approach similar STMs that defer

stores until a transaction commit

• Speculation approach similar STMs that undo
stores before a transaction abort

EnfoRSer
provides atomicity

of statically
bounded regions
more efficiently!

Similar to Software
Transactional Memory (STM)?
• Idempotent approach similar STMs that defer

stores until a transaction commit

• Speculation approach similar STMs that undo
stores before a transaction abort

EnfoRSer
provides atomicity

of statically
bounded regions
more efficiently!

Bounded regions:
efficient code

generation

Short regions:
conservative

conflict detection

Implementation and
Evaluation

Implementation

• Developed in Jikes RVM 3.1.3

• Code publicly available on Jikes RVM Research
Archive

Experimental Methodology

• Benchmarks

• DaCapo 2006, 9.12-bach

• Fixed-workload versions of SPECjbb2000 and
SPECjbb2005

• Platform

• AMD Opteron system: 32 cores

Whole-Program Static Analysis

Remove instrumentation from data-race-free accesses

[Naik et al.’s 2006 race detection algorithm, Chord]

0

20

40

60

80

100

120

140

Idempotent

EnfoRSer: Run-time Performance

%
 o

ve
rh

ea
d

ov
er

 u
nm

od
if

ie
d

JV
M

32% overhead on average

0

20

40

60

80

100

120

140

Idempotent

Speculation

EnfoRSer: Run-time Performance

%
 o

ve
rh

ea
d

ov
er

 u
nm

od
if

ie
d

JV
M

27% overhead on
average

0

20

40

60

80

100

120

140

Idempotent

Speculation

EnfoRSer: Run-time Performance

%
 o

ve
rh

ea
d

ov
er

 u
nm

od
if

ie
d

JV
M

pjbb2005, over 100%

overhead
Cao et al., WoDet 2014

0

20

40

60

80

100

120

140

Idempotent

Speculation

Speculation via log

EnfoRSer: Run-time Performance

%
 o

ve
rh

ea
d

ov
er

 u
nm

od
if

ie
d

JV
M

53% overhead on average
(speculation via log)

EnfoRSer: Run-time Performance
with and without static race detection

%
 o

ve
rh

ea
d

ov
er

 u
nm

od
if

ie
d

JV
M

0

10

20

30

40

50

60

70

Idempotent

Speculation

Speculation via log

geomean
w race det

geomean
w/o race det

Evaluation: Concurrency
Errors Avoidance

SBRS’s potential to eliminate concurrency

bugs exposed on relaxed memory models

Avoiding Concurrency Errors

DRF0 (AM) SC SBRS

hsqldb6 Infinite loop Correct Correct

sunflow9 Null pointer
exception

Correct Correct

jbb2000 Corrupt output Corrupt output Correct

jbb2000 Infinite loop Correct Correct

sor Infinite loop Correct Correct

lufact Infinite loop Correct Correct

moldyn Infinite loop Correct Correct

raytracer Fails validation Fails validation Correct

AM = Adversarial Memory, Flanagan and Freund, PLDI 2010

Avoiding Concurrency Errors

DRF0(AM) SC SBRS

hsqldb6 Infinite loop Correct Correct

sunflow9 Null pointer
exception

Correct Correct

jbb2000 Corrupt output Corrupt output Correct

jbb2000 Infinite loop Correct Correct

sor Infinite loop Correct Correct

lufact Infinite loop Correct Correct

moldyn Infinite loop Correct Correct

raytracer Fails validation Fails validation Correct

AM = Adversarial Memory, Flanagan and Freund, PLDI 2010

Avoiding Concurrency Errors

DRF0 SC SBRS

hsqldb6 Infinite loop Correct Correct

sunflow9 Null pointer
exception

Correct Correct

jbb2000 Corrupt output Corrupt output Correct

jbb2000 Infinite loop Correct Correct

sor Infinite loop Correct Correct

lufact Infinite loop Correct Correct

moldyn Infinite loop Correct Correct

raytracer Fails validation Fails validation Correct

AM = Adversarial Memory, Flanagan and Freund, PLDI 2010

Avoids all the errors
exposed by AM.

Related Work

• Checks conflicts in bounded region

DRFx, Marino et al., PLDI 2010

• Checks conflicts in synchronization-free regions

Conflict Exceptions, Lucia et al., ISCA 2010

• Enforces atomicity of bounded regions

Bulk Compiler, Ahn et al., MICRO 2009

• Enforces atomicity of synchronization free regions

„ and region serializability for all, Ouyang et al., HotPar 2013

Requires customized
hardware

Requires additional
cores

Conclusion
R

un
-t

im
e

co
st

Strength

Statically Bounded Region

Serializability

EnfoRSer: An analysis to
enforce SBRS practically

Evaluation: Low run-time cost,
eliminates real bugs

