
             Aritra Sengupta,  
               Swarnendu Biswas,  
               Minjia Zhang,  
    Michael D. Bond 
    and 
               Milind Kulkarni 
                
 

 

 

 

 

 

 

ASPLOS 2015, ISTANBUL, TURKEY 

Hybrid Static-Dynamic Analysis for  
Statically Bounded Region Serializability 

                              



Programming Language 
Semantics?  

 

 

•Data Races 

• C++ no guarantee of semantics – “catch-fire” 
semantics  

• Java provides weak semantics 



Weak Semantics 
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A a = null; 
boolean init = false; 
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Weak Semantics 

              T1 T2 

init = true; 
 
 
 
a = new A(); 
 
 

if (init) 
   a.field++; 
 

Null 
dereference 



DRF0 

• Atomicity of synchronization-free regions for 
data-race-free programs 

• Data races - no semantics 

• C++, Java follow variants of DRF0 

 

– Adve and Hill, ISCA, 1990 

 



Need for Stronger Memory 
Models 

 

“The inability to define reasonable semantics for 
programs with data races is not just a theoretical 
shortcoming, but a fundamental hole in the foundation 
of our languages and systems„” 

 

• Give better semantics to programs with data races 

• Stronger memory models 

   – Adve and Boehm, CACM, 2010 



Sequential Consistency (SC) 

Shared memory accesses interleave arbitrarily while 
each thread maintains program order 

 



Sequential Consistency 

DRF0 Sequential Consistency 



An Example Program Under SC 
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int pos = 0  
int [ ] buffer 
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An Example Program Under SC 
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An Example Program Under SC 

          T1             T2 

buffer[pos++]= 5 buffer[pos++] = 6 

SC execution 

 pos = = 1  
 buffer 
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int pos = 0  
int [ ] buffer 
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Programmer Assumption 

 
Atomicity of high-level 

operations 



Can SC Eliminate Common 
Concurrency Bugs? 
 

“...programmers do not reason about correctness of parallel 

code in terms of interleavings of individual memory 
accesses„” 

• SC does not prevent common concurrency bugs 

• Data races dangerous even under SC 

 

   – Adve and Boehm, CACM 2010 
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EnfoRSer: An analysis to 
enforce SBRS practically 
 
Evaluation: Low run-time cost, 
eliminates real bugs 
 
 
 



New Memory Model: 
Statically Bounded Region 
Serializability (SBRS) 

 

 

    

 

 



Program Execution Behaviors 

Statically Bounded Region 
Serializability SC DRF0 



Statically Bounded Region 
Serializability (SBRS) 

rel(lock) 

acq(lock) 

methodCall() 

Synchronization 
operations 
Method calls 
Loop backedges 
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Serializability (SBRS) 
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bounded 

Loop 
backedges 



Under SBRS 
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Bug Elimination 

x+= 42; 
 
 
if (o != null)  
       {. . .= o.f; }  
 

buffer[pos++] = val; 

  read–modify–write 

 check before use 

   multi-variable  
operation 



EnfoRSer: A Hybrid Static- 
Dynamic Analysis to Enforce 

SBRS 



EnfoRSer, an efficient 
enforcement of SBRS 

Compiler 
Transformations 

Runtime Enforcement 

 
Two-phase Locking 

 



Basic Mechanism 
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Y =  
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Y =  

 
X =  
 
 
 
 
= Y 
 
 
 
 
Z =  

T1 T2 

Deadlock 

 
• Lightweight reader-

writer locks2 
• Biased synchronization 
• Lose ownership while 

acquiring locks 
 

2. Bond et al. Octet: Capturing and Controlling Cross-Thread Dependences Efficiently. In OOPSLA, 2013.  
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Basic Mechanism 

Locks acquired 
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Challenges in Basic Mechanism 

 
Y =  
 
 
 
 
= X 
 
 
 
 
Y =  

Stores executed 



EnfoRSer Atomicity 
Transformations 
 

• Idempotent: Defer stores until all locks  
are acquired 

 

•Speculation: Execute stores speculatively 
and roll back in case of a conflict 



Idempotent Transformation 
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Idempotence Challenges 

= Y 

…

X = 

= X 

Loads data 
dependent on 

stores 



Idempotence Challenges 

= Y 
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X = 

= Z 

Aliasing between 
loads and stores 

Data dependence? 



Speculation Transformation 
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Speculation Transformation 

X = 

= Y 

Z = Z = old_Z 

X = old_X 

    old_X = X 

    old_X = Z 

Backup store values 

Generate roll-back code 



Speculation Mechanism 
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Speculation Mechanism 
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Speculation Challenges 
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Conflict 
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Similar to Software 
Transactional Memory (STM)? 
• Idempotent approach similar to STMs that defer 

stores until a transaction commits 

• Speculation approach similar to STMs that 
execute stores but undo them if a transaction 
needs to abort 
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Similar to Software 
Transactional Memory (STM)? 
• Idempotent approach similar STMs that defer 

stores until a transaction commit 

• Speculation approach similar STMs that undo 
stores before a transaction abort 

EnfoRSer 
provides atomicity 

of  statically 
bounded regions 
more efficiently! 

Bounded regions: 
efficient code 

generation  

Short regions: 
conservative 

conflict detection  



Implementation and 
Evaluation 



Implementation 

• Developed in Jikes RVM 3.1.3 

• Code publicly available on Jikes RVM Research 
Archive 

 



Experimental Methodology 

• Benchmarks 

• DaCapo 2006, 9.12-bach 

• Fixed-workload versions of SPECjbb2000 and 
SPECjbb2005 

• Platform 

• AMD Opteron system: 32 cores 



Whole-Program Static Analysis 

Remove instrumentation from data-race-free accesses 

[Naik et al.’s 2006 race detection algorithm, Chord] 
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Cao et al., WoDet 2014 
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53% overhead on average 
(speculation via log) 



EnfoRSer: Run-time Performance 
with and without static race detection 
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Evaluation: Concurrency 
Errors Avoidance 

SBRS’s potential to eliminate concurrency 

bugs exposed on relaxed memory models 

 



Avoiding Concurrency Errors 

DRF0 (AM) SC SBRS 

hsqldb6 Infinite loop Correct Correct 

sunflow9 Null pointer 
exception 

Correct Correct 

jbb2000 Corrupt output Corrupt output Correct 

jbb2000 Infinite loop Correct Correct 

sor Infinite loop Correct Correct 

lufact Infinite loop Correct Correct 

moldyn Infinite loop Correct Correct 

raytracer Fails validation Fails validation Correct 

AM = Adversarial Memory, Flanagan and Freund, PLDI 2010 
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Avoiding Concurrency Errors 

DRF0 SC SBRS 

hsqldb6 Infinite loop Correct Correct 

sunflow9 Null pointer 
exception 

Correct Correct 

jbb2000 Corrupt output Corrupt output Correct 

jbb2000 Infinite loop Correct Correct 

sor Infinite loop Correct Correct 

lufact Infinite loop Correct Correct 

moldyn Infinite loop Correct Correct 

raytracer Fails validation Fails validation Correct 

AM = Adversarial Memory, Flanagan and Freund, PLDI 2010 

Avoids all the errors 
exposed by AM. 



Related Work 

• Checks conflicts in bounded region 

DRFx, Marino et al., PLDI 2010 

• Checks conflicts in synchronization-free regions 

Conflict Exceptions, Lucia et al., ISCA 2010 

• Enforces atomicity of bounded regions 

Bulk Compiler, Ahn et al., MICRO 2009 

• Enforces atomicity of synchronization free regions 

„ and region serializability for all, Ouyang et al., HotPar 2013  
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