
Hybrid Static–Dynamic Analysis for
Statically Bounded Region Serializability ∗

Aritra Sengupta Swarnendu Biswas Minjia Zhang Michael D. Bond Milind Kulkarni
Ohio State University Purdue University

{sengupta,biswass,zhanminj,mikebond}@cse.ohio-state.edu milind@purdue.edu

Abstract
Data races are common. They are difficult to detect, avoid,
or eliminate, and programmers sometimes introduce them
intentionally. However, shared-memory programs with data
races have unexpected, erroneous behaviors. Intentional and
unintentional data races lead to atomicity and sequential
consistency (SC) violations, and they make it more difficult
to understand, test, and verify software. Existing approaches
for providing stronger guarantees for racy executions add
high run-time overhead and/or rely on custom hardware.

This paper shows how to provide stronger semantics for
racy programs while providing relatively good performance
on commodity systems. A novel hybrid static–dynamic anal-
ysis called EnfoRSer provides end-to-end support for a
memory model called statically bounded region serializ-
ability (SBRS) that is not only stronger than weak memory
models but is strictly stronger than SC. EnfoRSer uses static
compiler analysis to transform regions, and dynamic anal-
ysis to detect and resolve conflicts at run time. By demon-
strating commodity support for a reasonably strong memory
model with reasonable overheads, we show its potential as
an always-on execution model.
Categories and Subject Descriptors D.3.4 [Programming
Languages]: Processors—Compilers, Run-time environ-
ments
Keywords Dynamic analysis; static analysis; region serializ-
ability; memory models; atomicity; synchronization

1. Introduction
Shared-memory parallel programs have many possible be-
haviors due to the ways in which threads’ memory accesses
can interleave and can be reordered by compilers and hard-

∗ This material is based upon work supported by the National Science
Foundation under Grants CSR-1218695, CAREER-1253703, and CCF-
1421612.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASPLOS’15, March 14–18, 2015, Istanbul, Turkey.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2835-7/15/03. . . $15.00.
http://dx.doi.org/10.1145/2694344.2694379

ware. Modern languages and systems provide a strong guar-
antee for any well-synchronized, or data-race-free, execu-
tion: its synchronization-free regions (SFRs) appear to ex-
ecute atomically. However, executions with data races have
few or no guarantees [1, 7, 8, 39], leading to unexpected,
erroneous behaviors. Furthermore, handling the possibility
of data races complicates static and dynamic analyses. Prior
work has proposed stronger memory models, but they have
lacked a compelling tradeoff between costs and benefits.

This paper’s goal is to provide end-to-end support for a
memory model that achieves a compelling balance between
the benefits of stronger guarantees and the costs of provid-
ing those guarantees. Inspired by ideas from prior work on
using region serializability (RS) to provide SC [4, 23, 37,
40], we focus on a new memory model called statically
bounded region serializability (SBRS) that enforces serial-
izability (atomicity) of statically bounded regions: regions
bounded by synchronization operations, loop back edges,
and method calls. SBRS offers an interesting cost–benefit
tradeoff: it is strictly stronger than SC, yet we show that the
bounded nature of its regions offers opportunities for static–
dynamic analysis to enforce end-to-end SBRS with reason-
able performance on commodity systems.

This paper presents a hybrid static–dynamic analysis for
enforcing end-to-end SBRS called EnfoRSer. EnfoRSer en-
forces SBRS through (i) a static, intraprocedural compiler
pass that partitions code into statically bounded regions, and
transforms and instruments each region so that (ii) a runtime
system can guarantee that regions appear to execute atomi-
cally. The key to EnfoRSer’s operation is the interaction be-
tween the static transformations and the runtime system.

At a high level, EnfoRSer guarantees region atomicity
using two-phase locking: each thread acquires lightweight,
mostly-synchronization-free reader–writer locks before each
memory access and does not release locks until the re-
gion ends. We present two distinct approaches for imple-
menting this basic technique while overcoming its inherent
tendency to deadlock. The first approach executes regions
idempotently by deferring side effects (stores) until the re-
gion has acquired all of its locks. The second approach ex-
ecutes regions speculatively, rolling back speculative state
when regions potentially conflict. While these approaches
are related to software transactional memory (e.g., [25]),
statically bounded regions enable a significantly different,

higher-performance design based on hybrid static–dynamic
analysis (Section 9).

We have implemented EnfoRSer in a high-performance
Java virtual machine and applied it to benchmarked version
of large multithreaded applications. EnfoRSer adds 43 and
36% overhead on average for the idempotent and specula-
tion approaches, respectively—without relying on custom
hardware or whole-program analysis. After we extend En-
foRSer to use the results of whole-program static analysis
that identifies definitely data-race-free (DRF) accesses [44],
it adds 32 and 27% average overhead for the idempotent and
speculation approaches, respectively. Thus, enforcing SBRS
can incur reasonable overhead even in commodity systems,
meaning that it is a feasible always-on memory model that
could improve software reliability today—and perhaps be
supported more efficiently by future hardware systems.

2. Background and Motivation
An execution is data race free (DRF) if every pair of con-
flicting accesses (i.e., accesses to the same variable where at
least one is a write) is well synchronized [3]—meaning they
are ordered by the happens-before relation, a partial order
that is the union of program and synchronization order [28].
The DRF0 memory model. Modern shared-memory lan-
guages such as Java and C++ use variants of the DRF0
memory model [2, 8, 39]. DRF0 provides a strong guaran-
tee for any DRF execution: serializability (i.e., atomicity) of
synchronization-free regions (SFRs).

However, DRF0 provides weak guarantees for racy exe-
cutions. Java tries to preserve the memory and type safety of
racy executions [39], although the resulting memory model
has flaws [58]. C++ provides essentially no guarantees [8].

Eliminating data races effectively and efficiently is a chal-
lenging, unsolved problem (e.g., [11, 21, 43]). Moreover,
developers often avoid synchronization in pursuit of perfor-
mance, deliberately introducing data races that lead to unex-
pected, ill-defined behaviors. Adve and Boehm and Ceze et
al. argue that languages and hardware must provide stronger
memory models to avoid impossibly complex semantics [1,
7, 14]. According to Adve and Boehm: “The inability to de-
fine reasonable semantics for programs with data races is not
just a theoretical shortcoming, but a fundamental hole in the
foundation of our languages and systems.” They “call upon
software and hardware communities to develop languages
and systems that enforce data-race-freedom . . . ” [1].
Existing stronger memory models. Under the sequential
consistency (SC) memory model, operations appear to inter-
leave in an order respecting program order [29]. Providing
end-to-end SC involves limiting memory access reordering
by both the compiler and hardware, which slows programs
and/or relies on custom hardware support [1, 32, 33, 41, 47,
51, 53, 55] (Section 9).

A promising approach for providing SC (and/or for de-
tecting data races) is to provide region serializability (RS)
of dynamically executed regions of code [4, 18, 23, 37, 38,
40, 52]. RS can be an advantageous mechanism since it can

avoid unduly limiting compiler and hardware reordering of
accesses. However, prior work that uses RS for SC relies on
new hardware, adds high overhead, and/or checks SC instead
of enforcing it, risking unexpected failures (Section 9).

While SC is stronger than DRF0-based memory models,
it is not particularly strong. Under SC, it is still difficult and
unnatural for programmers to reason about all interleavings,
and for program analyses and runtime support to deal with
all interleavings. Some operations that many programmers
expect to execute atomically do not execute atomically un-
der SC (e.g., 64-bit integer accesses in Java; multi-access
operations such as x++ or buffer[index++] = . . .). Adve
and Boehm argue that “programmers do not reason about
correctness of parallel code in terms of interleavings of in-
dividual memory accesses, and sequential consistency does
not prevent common sources of concurrency bugs . . . ” [1].

While most work on RS-based memory models has fo-
cused on bounded regions, some work supports RS of re-
gions bounded only by synchronization operations, a mem-
ory model we call full-SFR RS [37, 45]. While full-SFR
RS is clearly a strong memory model, it may not be prac-
tical to enforce it—even with custom hardware support. Ex-
isting approaches rely on complex custom hardware and
check (rather than enforce) full-SFR RS [37], or they rely
on page-protection-based speculation and slow programs by
two times or more (unless extra cores are available) [45].

3. Statically Bounded Region Serializability
This paper seeks to provide a strong memory model that can
be supported with reasonable efficiency in commodity sys-
tems. Inspired by prior work that provides RS, our approach
is based on enforcing RS. While providing full-SFR RS is
appealing, it seems inherently difficult to enforce without
heavyweight support for conflict detection and speculation,
which would be expensive in software and complex in hard-
ware. Thus, we seek a compromise memory model that bal-
ances strength and practicality.

Our choice is guided by two insights. First, enforcing RS
of dynamically bounded regions (i.e., each executed region
performs a bounded number of operations) permits simple,
conservative region conflict detection, since the cost of mis-
speculation is bounded. Second, enforcing RS of not only
dynamically but also statically bounded regions (i.e., an ex-
ecuting region executes each static instruction at most once)
enables powerful static compiler transformations for enforc-
ing region atomicity. Based on these insights, we propose
to enforce a memory model called statically bounded re-
gion serializability (SBRS), which provides RS of statically
bounded regions—regions demarcated at loop back edges
and method calls as well as synchronization operations.

Section 8 evaluates SBRS’s efficacy at avoiding real pro-
gram errors. Here we discuss potential advantages and dis-
advantages of SBRS relative to other memory models.
Potential advantages and disadvantages. SBRS makes
software automatically more reliable than under DRF0-
based models. In addition to providing SC and thus avoiding

hard-to-reason-about SC violations (e.g., double-checked
locking errors), SBRS eliminates all violations of atom-
icity of statically bounded regions, e.g., common patterns
such as improperly synchronized read–modify–write ac-
cesses and accesses to multiple variables. The following
code snippets—which programmers may already expect to
execute atomically—will execute atomically under SBRS:

• x += 42 (read–modify–write)
• if (o != null) { . . . = o.f; } (check before use)
• buffer[pos++] = value (multi-variable operation)

Furthermore, because SBRS restricts possible behaviors, the
job of various static and dynamic analyses or runtime sys-
tems can be simplified by assuming SBRS. Current analyses
and runtimes either (unsoundly) ignore the effects of pos-
sible data races,1 or they consider the effects but incur in-
creased complexity or overhead. The model checker CHESS
must consider many more possible executions because of
the effects of data races [12, 42]. Static dataflow analysis
must account for racy interleavings to be fully sound [16].
The primary performance challenge of software-based mul-
tithreaded record & replay is dealing with the possibility
of data races [56]: RecPlay assumes data race freedom un-
soundly to reduce costs [49]; Chimera shows that handling
data races leads to prohibitively high overhead [30]; other
approaches sidestep this problem but incur other disadvan-
tages or limitations such as not supporting both online and
offline replay [31, 46] or requiring extra available cores [56].

We note that code expansion optimizations, such as
method inlining and loop unrolling, increase the size of
statically bounded regions beyond those anticipated at the
source-code level, eliminating more atomicity violations
and increasing the scope of possible compiler reordering
optimizations. Since code expansion makes regions strictly
larger than they appear to be at the source-code level, the
atomicity of source-code-level regions still holds.

SBRS is clearly not as strong as full-SFR RS, which will
avoid more errors and provide fewer interleavings for static
and dynamic analyses to consider. Programmers might find
it easier to reason about full-SFR RS, which requires con-
sidering only synchronization operations, than SBRS, which
requires thinking about method and loop boundaries as well.
On the other hand, full-SFR RS requires interprocedural rea-
soning: a region is synchronization free only if (transitively)
all of its callee methods are synchronization free.

In any case, we suspect that SBRS and full-SFR RS are
mainly useful not for helping programmers reason about
their code, but rather for enforcing behaviors that many
programmers already assume.
Extending SBRS. While we expect most programmers can
and should be unaware of runtime support for SBRS, experts

1 In theory, a static or dynamic analysis for C++ can provide any behavior
for racy executions and still be sound, since C++ (unlike Java) provides
no semantics for racy executions [8]. In practice, real-world programs have
data races, so it is useful for analyses to behave sensibly in their presence.

might want more control. They could mark code regions as
atomic, e.g., with atomic {} blocks. EnfoRSer could nat-
urally enforce atomicity of marked, statically bounded re-
gions, and use method inlining and loop unrolling on larger
regions to allow EnfoRSer to execute them atomically. The
largest regions could be handled by using software transac-
tional memory (STM) integrated with EnfoRSer. These ex-
tensions are beyond this paper’s scope.
Progress. If SC guarantees progress2 for a program, SBRS
guarantees progress for that program. A proof sketch of this
claim is available in an extended technical report [50].

A program can be unable to make progress under SBRS
even though it might make progress under SC. For example,
the following program might terminate—but is not guaran-
teed to terminate—under SC:

Initially x = false, y = false, done = false

// T1:
while (!done) {

x = !x;
y = !y;
}

// T2:
while (true) {

if (x != y) break;
}
done = true;

In contrast, under SBRS, each loop body executes atomi-
cally, so the program cannot terminate.

Interestingly, full-SFR RS can impede the progress of a
program for which SC guarantees progress, although full-
SFR RS guarantees progress for any program for which
DRF0 guarantees progress. For example, the following pro-
gram always terminates under SC; cannot terminate under
full-SFR RS (any terminating execution would violate full-
SFR RS); and may or may not terminate under DRF0 (e.g.,
the compiler can legally hoist each load out of its loop):

Initially x = false, y = false

// T1:
y = true;
while (!x) ;

// T2:
x = true;
while (!y) ;

Under SBRS, this program always terminates because re-
gions are dynamically bounded.

4. Hybrid Static–Dynamic Analysis
This section describes EnfoRSer, a hybrid static–dynamic
analysis that enforces end-to-end SBRS.
4.1 Overview
To enforce SBRS, EnfoRSer’s compiler pass partitions the
program into regions bounded by synchronization opera-
tions, method calls, and loop back edges. Dynamic analy-
sis then enforces atomicity of regions. A naı̈ve approach for
enforcing atomicity is as follows. First, associate a “lock”
with each potentially shared object3 (e.g., by adding a header
word to each object that tracks the object’s ownership state).
Henceforth, this paper uses the term “lock” to refer to per-
objects locks that are added by EnfoRSer and acquired by its

2 We assume a fair scheduler that does not allow any thread to starve.
3 This paper uses the term “object” to refer to any unit of shared memory.

Demarcate
regions

Existing
optimizations
within
boundary points

Insert lock
acquires

Duplicate
instructions
in multiple
regions

Generate slice
rooted at
lock acquires
& stores

Generate
undo
block

Generate
backup and
retry code

Idempotent transformation

Existing
optimizations

Generate
RDG

Generate slice
rooted at
stores

Generate
deferred
stores

Generate
backup and
retry code

Generate
RDG

Speculation transformation

Figure 1. The transformations performed by an EnfoRSer-enabled optimizing compiler. Boxes shaded gray show existing compiler
optimizations. Dashed boxes indicate transformations performed once on each region.

instrumentation and are not visible to programmers. Second,
instrument the region to ensure that (1) a thread holds a lock
on an object before the region accesses it and (2) the region
releases locks only when it ends. This approach implements
two-phase locking, so the execution will be equivalent to a
serialized execution of regions.

This naı̈ve approach suffers from two drawbacks. First,
because threads can access objects in arbitrary orders, and
per-object locks must be held until the end of the region
to satisfy two-phase locking, a thread can deadlock while
executing a region that attempts to acquire multiple locks.
EnfoRSer solves this problem by applying a compile-time
atomicity transformation: if a thread cannot acquire a lock
because another thread holds it—we call this situation a
“conflict,” as all region conflicts result in a failed lock
acquire—the transformed region is restarted, avoiding the
deadlock. Second, acquiring a lock on each object access
seems to require an atomic operation such as compare-and-
swap (CAS), which would add unreasonable overhead. En-
foRSer uses special locks that mostly avoid atomic opera-
tions [10] (Section 4.3).

The key challenge is ensuring that a transformed region
can be safely restarted without losing atomicity. If a region
restarts after modifying shared objects, then either another
thread could see those effects, or the region may behave
incorrectly after restart. Either way, region atomicity is vi-
olated. We design, implement, and evaluate two atomicity
transformations that address this challenge. (We investigate
two different transformations in order to explore the space.)

The idempotent transformation modifies each region to
defer stores until all per-object locks have been acquired. If
a region encounters a conflict when acquiring a lock, it can
safely restart since it executes idempotently up to that point.
The challenge is generating correct code for deferring stores
in the face of object aliasing and conditional statements.

The speculation transformation modifies the region to
perform stores speculatively as it executes. The transformed
region backs up the original value of stored-to memory lo-
cations. On a conflict, the modified region can restart safely
by using the backed-up values to restore memory to its orig-
inal state. The challenges are maintaining the backup values
efficiently and restoring them correctly on retry.

Putting it all together, EnfoRSer’s compiler pipeline op-
erates as shown in Figure 1. First, it demarcates a program
into regions (Section 4.2), and any optimizing passes in the
compiler are performed, modified to operate within region
boundaries. Next, the compiler inserts lock acquire oper-
ations before object accesses (Section 4.3). The compiler
then performs a duplication transformation (Section 4.4) and
builds an intermediate representation (Section 4.5), before
transforming each region using one of the two atomicity
transformations (Sections 4.6 and 4.7). Finally, any remain-
ing compiler optimizations are performed.

At run time, if a thread executing a region detects a
potential conflict, it restarts the region safely, preserving
atomicity. The atomicity of regions guarantees equivalence
to some serialized execution of regions.

4.2 Demarcating Regions
The first step in EnfoRSer’s compiler pass is to divide the
program into regions; later steps ensure that these regions
execute atomically. The following program points are re-
gion boundary points: synchronization operations, method
calls, and loop back edges.4 Since method calls are boundary
points, regions are demarcated at method entry and return,
i.e., EnfoRSer’s analysis is intraprocedural. An EnfoRSer re-
gion is a maximal set of instructions such that (1) for each
instruction i, all (transitive) successors of i are in the region
provided that the successors are reachable without traversing
a region boundary point; and (2) there exists a “start” instruc-
tion s such that each instruction i in the region is reachable
from s by only traversing edges in the region. Note that an
instruction can be in multiple regions statically, i.e., reach-
able from multiple boundary points without an intervening
boundary point—a situation that Section 4.4 addresses.
Reordering within and across regions. To ensure region
atomicity, the compiler cannot be permitted to reorder in-
structions across region boundary points. Similar to DRFx’s
soft fences [40], EnfoRSer prohibits inter-region optimiza-
tions, by modifying optimization passes, such as common
subexpression elimination, that may reorder memory ac-
cesses to ensure they do not reorder across boundary points.
We find that prohibiting reordering across region boundaries

4 A loop back edge is any control-flow edge to a loop header from a basic
block dominated by the loop header. Loop headers are not boundary points.

impacts performance negligibly for our implementation; de-
tails are in an extended technical report [50].
4.3 Lightweight Reader–Writer Locks
The next step after demarcating regions is instrumenting
program loads and stores with lock acquire operations. Ac-
quiring traditional locks on every object access would be
prohibitively expensive. EnfoRSer instead uses lightweight
reader–writer locks that differ from traditional locks in two
key ways. (1) A lock is always “acquired” in some state such
as write-exclusive or read-shared, and acquiring the lock
does not require an atomic operation if the thread already
holds the lock in a compatible state. (2) A thread never auto-
matically “releases” a lock; instead, another thread may ac-
quire the lock, but it must first coordinate with the thread(s)
that currently hold the lock. The design and implementation
of these reader–writer locks (called “locks” for the remain-
der of the paper) are based closely on Octet locks [10]. We
summarize their operation here.

Each object has a lock, denoted by o.lockState but not
visible to programmers, that is always acquired in one of the
following states:

• WrExT: Thread T may read or write the object.
• RdExT: T may read but not write the object.
• RdSh: Any thread may read but not write the object.

At each program store and load to the object referenced by o,
the compiler inserts instrumentation denoted by acq wr(o)
and acq rd(o), respectively, as the following pseudocode
shows:

acq wr(o); // instrumentation
o. f = ...; // program store

acq rd(p); // instrumentation
... = p.g; // program load

The following pseudocode shows the definitions of acq wr()
and acq rd() (T is the executing thread):

acq wr(Object obj) {
if (obj . lockState != WrExT)

wrSlowPath(obj); /∗ change obj. lockState ∗/
}

acq rd(Object obj) {
if (obj . lockState != WrExT &&

obj . lockState != RdExT) {
if (obj . lockState != RdSh)

rdSlowPath(obj); /∗ change obj. lockState ∗/
load fence ; // see footnote 5

}
}

To acquire a lock to obtain read or write access to its asso-
ciated object, a thread T checks the state of the lock. If the
lock’s state is compatible with the access being performed
(e.g., T wants to read or write an object in WrExT state),
the lock is already “acquired” without any synchronization
operations. This check is called the fast path.

Code Transition Old Program New Sync.
path(s) type state access state needed

Fast Same state
WrExT R/W by T Same

NoneRdExT R by T Same
RdSh R by T Same

Upgrading RdExT W by T WrExT Atomic
RdExT1 R by T2 RdSh op.

Fast &

Conflicting

WrExT1 W by T2 WrExT2

slow WrExT1 R by T2 RdExT2 Roundtrip
RdExT1 W by T2 WrExT2 coord.
RdSh W by T WrExT

Table 1. State transitions for lightweight locks.

Otherwise, a thread encounters a lock in an incompatible
state, and it must change the lock’s state. Table 1 shows all
possible state transitions.5 The first three rows (Same state)
correspond to the fast path. The remaining rows show cases
that must change a lock’s state. Collectively, all operations
that change a lock’s state are called the slow path. An up-
grading transition (e.g., from RdExT to RdSh) expands the
set of accesses allowed by the lock; it requires an atomic
operation to change the lock’s state.

The slow path triggers a conflicting transition in cases
where the program access conflicts with accesses allowed
under the lock’s current state. Because other thread(s) might
be accessing the object without synchronization, merely
changing the lock’s state—even with an atomic operation—
is insufficient. Instead, the thread executing the conflicting
transition, called the requesting thread, must coordinate with
every other thread, called a responding thread, that has ac-
cess to the object, to ensure the responding thread(s) “see”
the state change. For WrExT and RdExT states, T is the re-
sponding thread; for RdSh states, every other thread is a
responding thread.

A responding thread participates in coordination only at
a safe point: a point that does not interrupt instrumentation–
access atomicity (i.e., atomicity of lock acquire instrumen-
tation together with the program access it guards). Conve-
niently, managed language virtual machines already place
safe points throughout the code, e.g., at every method en-
try and loop back edge. Furthermore, all blocking operations
(e.g., program lock acquires and I/O) must act as safe points.
If a responding thread is actively executing program code,
the requesting and responding threads coordinate explicitly:
the requesting thread sends a request, and the responding
thread responds when it reaches a safe point. Otherwise, the
responding thread is at a blocking safe point, so the threads
coordinate implicitly: the requesting thread atomically mod-
ifies a flag that the responding thread will later see. Finally,
in either case, the requesting thread finishes changing the
lock’s state and proceeds with the access.

Thus, while traditional locks add synchronization at every
access, the locks used by EnfoRSer add no synchronization

5 EnfoRSer does not need nor use Octet’s RdSh counter [10]. Instead,
EnfoRSer ensures that reads to RdSh locks happen after the prior write
by issuing a load fence on the RdSh fast path.

if (c1)

r = q

<BP1>

acq_wr(s)
s.f = i
if (c2)

acq_wr(p)
p.f = j

acq_rd(o)
q = o.f

acq_rd(q)
k = q.g

<BP2>

Different Region

BB0

BB1 BB2

BB3

BB5
BB4

BB6

BB7

T

T F

F

 <BP>

Different Region

acq_rd : read lock acquire

acq_wr : write lock acquire

<BP> : boundary point

Figure 2. A region instrumented with lock acquire operations.

at non-conflicting accesses (the fast path), but they require
coordination with other threads at conflicting accesses (the
slow path). This tradeoff works well in practice for many
programs, which aim for good thread locality by design.
Avoiding deadlock. As described so far, locks are deadlock
prone: two threads each waiting to acquire a lock held by the
other thread will wait indefinitely. To prevent deadlock, if a
thread T is waiting for other thread(s) to relinquish a lock, T
allows other threads to acquire locks held by T.

This behavior has interesting implications for EnfoRSer.
When a thread tries to acquire an object’s lock, it might give
up other objects’ locks acquired in the same region. As a
result, rather than suffering from deadlock, as in traditional
two-phase locking, regions may lose atomicity when they
conflict. Hence, EnfoRSer’s transformed regions actually
restart whenever a lock may have been released—indicated
by responding to another thread’s coordination request.
Example. Figure 2 shows a region instrumented with lock
acquire operations (acq rd and acq wr). The rest of this
section uses this region as a running example.

4.4 Duplication Transformation
If a lock acquire (acq rd(o) or acq wr(o)) detects a potential
conflict, it must retry the region by returning control to the
region start. For the compiler to generate control flow for
retry, the lock acquire must be statically in a single region.

The modified compiler thus performs a duplication trans-
formation prior to atomicity transformations (Figure 1). This
transformation duplicates instructions and control flow so
that every instruction (not including boundary points) is in
a single region. First, a simple dataflow analysis determines
which boundary point(s) reach each instruction (i.e., which
region(s) each instruction resides in). Second, in topologi-
cal order starting at method entry, the duplication algorithm
replicates each instruction that appears in k > 1 regions k−1
times, and retargets each of the original instruction’s prede-
cessors to the appropriate replicated instruction.

T

T

T
T T

T

F

F

T

T

F
F

Entry

acq_wr(s)

s.f = i

 if (c2) acq_rd(q) k = q.g

<BP2>

r = q

<BP1>

acq_wr(p)

p.f = j acq_rd(o)

q = o.f

 if (c1)

store-load

def-use

def-use

T

Figure 3. A region dependence graph for the region in Figure 2.

The duplication transformation does not duplicate any re-
gion boundary points. Since the number of region boundary
points remains fixed, duplication cannot result in an expo-
nential blowup in code size.

4.5 The Region Dependence Graph
In order to transform regions, the atomicity transformations
require static slices [27]: the set of instructions that are data
and control dependent on some instruction. Thus, for each
region, an atomicity transformation first builds a region de-
pendence graph (RDG), based on Ferrante et al.’s program
dependence graph [20], which captures both data and con-
trol dependences in a region. The RDG needs to track true
(write–read) dependences, but not output (write–write) or
anti (read–write) dependences. It can ignore loop-carried de-
pendences since regions are acyclic.

EnfoRSer’s RDG construction algorithm uses a reaching-
definitions analysis to compute intraprocedural data depen-
dences in a region. The algorithm treats lock acquire opera-
tions acq rd(o) and acq wr(o) like a use of the object refer-
enced by o. Because RDG construction is performed at the
region level, aliasing relationships that arise due to opera-
tions outside the region cannot be inferred. Hence, the RDG
construction algorithm adopts a conservative, type-based ap-
proach, e.g., it assumes that a load from field f of object o can
have a dependence with any earlier store to the same field
f of object p, since p and o could potentially alias. It also
conservatively assumes that loads from arrays may have de-
pendences from stores to type-compatible arrays. The con-
struction algorithm uses the data dependences computed by
the reaching-definitions analysis, as well as control depen-
dences computed by a standard post-dominance analysis, to
construct the final RDG.

Figure 3 shows the RDG for the region from Figure 2.
The dotted lines depict store–load dependences (between ac-
cesses to object fields or array locations) and def–use de-
pendences (between definitions and uses of local variables).
The construction algorithm’s aliasing assumptions lead to a
store–load dependence between s.f = i and q = o.f, since s
and o may be aliased. The Entry node is the root of the RDG

and has control dependence edges marked as T to all nodes
(only one in this case) that are not control dependent on any
other nodes. Other edges labeled T and F are control depen-
dence edges from conditionals to dependent statements.
Slicing of the RDG. Each atomicity transformation must
identify which parts of the region are relevant for the trans-
formation. The transformation performs static program slic-
ing of the RDG (based on static program slicing of the pro-
gram dependence graph [27]) to identify relevant instruc-
tions. A backward slice rooted at an instruction i includes
all instructions on which i is transitively dependent. Depen-
dences include both data (store–load and def–use) and con-
trol dependences. A slice rooted at a set of instructions is
simply the union of the slices of each instruction.
4.6 Enforcing Atomicity with Idempotence
The idempotent transformation defers side effects (program
stores) until the end of the region. The side-effect-free part
of the region, which includes all lock acquires, executes
idempotently, so it can be restarted safely if a lock acquire
detects a potential region conflict.

To defer program stores, the transformation replaces each
static store with a definition of a new local variable. Figure 4
shows the region from Figure 2 after the idempotent trans-
formation. The stores s.f = i and p.f = j from Figure 2 are
replaced with assignments to fresh locals i’ and j’ in BB1 and
BB3 of Figure 4. The two main challenges are (1) modifying
loads that might alias with stores so that they read the cor-
rect value and (2) generating code at the end of the region
that performs the stores that should actually execute.
Loads aliased with deferred stores. Any load that aliases
a deferred store needs to read from the local variable that
backs up the stored value, rather than from the deferred
store’s memory location. The RDG in Figure 3 includes
a store–load edge from s.f = i to q = o.f because RDG
construction conservatively assumes all type-compatible ac-
cesses might alias. As shown in BB1 of Figure 4, the trans-
formation substitutes a definition of a new temporary vari-
able i’ = i in place of the store s.f = i. If s and o alias, then
q = i’ should execute in place of q = o.f; otherwise q = o.f
should execute normally.

For each load, the transformation emits a series of alias
checks to disambiguate the scenarios: one for each poten-
tially aliased store that may reach the load. BB4–BB6 in Fig-
ure 4 show the result of this transformation. The transforma-
tion first emits the original load (BB4). Then, for each store
on which the load appears to be dependent, the transforma-
tion generates an assignment from the corresponding local
variable, guarded by an alias check (BB6, guarded by the
check in BB5). By performing these checks in program or-
der, the load will ultimately produce the correct value, even
if multiple aliasing tests pass. If a possibly-aliased store ex-
ecutes conditionally, the transformed load is guarded by a
conditional check in addition to the alias check to ensure
that the store executed. A similar situation arises with array
accesses, in which case the aliasing checks must not only
compare the array references, but also the index expressions.

q' = q
if (c1)

r = qacq_wr(s)
i' = i
if (c2)

acq_wr(p)
j' = j

acq_rd(o)
q = o.f

acq_rd(q)
k = q.g

BB0

BB1

BB2

BB3

BB5

BB4

BB6

BB7

T

T F

F

if (o != s)

q = i'

T F

<BP>

<BP1>

Different Region

BB8s.f = i'
if (c2)

p.f = j'

T

FBB9

Deferred stores

<BP2>

Different Region

Figure 4. Region from Figure 2 after idempotent transformation.

Although this approach may generate substantial code per
load, in practice later compiler passes can simplify it signif-
icantly. For example, if the compiler can prove two object
references definitely do or do not alias, constant propagation
and dead code elimination will remove unnecessary checks.

Deferred stores. It is nontrivial to generate code at the end
of a region to perform the region’s stores, because the code
should perform only the stores that actually would have ex-
ecuted. The transformation generates code at each region
exit based on a slice of the region’s stores from the RDG. It
generates each deferred store using the mapping from static
stores to local variables. To ensure a deferred store only ex-
ecutes if it would have in the original region, the slice in-
cludes all condition variables on which stores are control de-
pendent. The generated code checks these conditions before
performing any deferred store. For example, BB8 in Fig-
ure 4 checks condition c2, executing the deferred store in
BB9 only if the store would have occurred in the original
region (note that the same condition guards j’ = j in BB3).

Note that it is possible that the conditional variables
guarding stores are overwritten during the execution of the
idempotent portion of the region; if so, those conditionals
may resolve differently while executing deferred stores. To
avoid this problem, the transformation “backs up” the results
of any conditional in the idempotent region in fresh local
variables, and uses these locals in the conditionals guarding
deferred stores. Similarly, any store to an object field or array
in the original region is dependent on the base reference of

the object or array. If these base references may change dur-
ing execution, the transformation backs them up at the point
of the original store and uses the backups when executing
the deferred stores.

Supporting retry. Although the idempotent transformation
defers stores, the region can still have side effects if it modi-
fies local variables that may be used in the same or a later
region. For each region, the idempotent (and speculation)
transformations identify such local variables and insert code
to (1) back up their values in new local variables at region
start and (2) restore their values on region retry. In Figure 4,
local variable q is backed up in q’ at the beginning of the re-
gion (BB0). If a lock acquire detects a potential conflict, the
code restores the value of q from q’ (not shown) and control
returns to the region start (a dashed arrow indicates the edge
is taken if the operation detects a potential conflict).

4.7 Enforcing Atomicity with Speculation
EnfoRSer’s second atomicity transformation enables specu-
lative execution. This transformation leaves the order of op-
erations in the region unchanged, but it transforms the re-
gion to perform stores speculatively: before a store executes,
instrumentation saves the old value of the field or array ele-
ment being updated. If a lock acquire detects a possible con-
flict, the region restarts safely by “rolling back” the region’s
stores. Figure 5 shows the region from Figure 2 after apply-
ing the speculation transformation. The primary challenge is
generating code that correctly backs up stored-to variables
and (when a conflict is detected) rolls back speculative state.

Supporting speculative stores. Since regions are acyclic and
intraprocedural, every static store executes at most once per
region execution. Hence, the speculation approach’s trans-
formation can associate each store with a unique, new local
variable. Before each store to a memory location (i.e., field
or array element), the transformation inserts a load from the
location into the store’s associated local variable.

Generating code to roll back executed stores is complex
due to the challenge of determining which stores have exe-
cuted. The solution depends on the subpath executed through
the region. To tackle this challenge, the transformation gen-
erates an undo block for each region. In reverse topological
order, it generates an undo operation for each store s in the
region that “undoes” the effects of s using the associated
backup variable. To ensure that s is only undone if it ex-
ecuted in the original region, this undo operation executes
conditionally. The transformation determines the appropri-
ate conditions by traversing the RDG from s up through
its control ancestors. As in the idempotent approach, con-
ditional variables and object base references are backed up
if necessary, so they can be used during rollback. The undo
block in Figure 5 illustrates the result of this process. The
store to p.f is topologically after the store to s.f, so it appears
first in the undo block. The store to p.f is performed if both
c1 and c2 are true, so the old value is restored under the same
conditions. Likewise, the store to s.f is only performed, and
hence only undone, if c1 is true.

r = q

<BP1>

acq_wr(s)
i' = s.f
s.f = i
if (c2)

acq_wr(p)
j' = p.f
p.f = j

acq_rd(o)
q = o.f

acq_rd(q)
k = q.g

<BP2>

Different Region

Different Region

BB0

BB1
BB2

BB3

BB5BB4

BB6

BB7

T

T F

F

undo
block

<BP>

if (c1) {
 if (c2) {
 p.f = j'
 }
}
if (c1) {
 s.f = i'
}
q = q'

q' = q
if (c1)

Figure 5. Region from Figure 2 after speculation transformation.

Supporting retry. The transformation generates control flow
for each lock acquire to jump to the appropriate location in
the undo block if the lock acquire detects a potential conflict.
The jump target is the first undo operation associated with a
store that is a control-flow predecessor of the lock acquire.
Figure 5 shows these conditional jumps with dashed lines.
As with the idempotent transformation, local variables must
be backed up and restored during retry. In the figure, q is
backed up in q’ at the beginning of the region, and restored
at the end of the undo block.

5. Optimizations
EnfoRSer’s compiler analysis identifies accesses that do not
need lock acquires, which in turn enables reducing the size
of regions that need to be analyzed and transformed.
Statically redundant lock acquires. A lock acquire for an
object access is “redundant” if each incoming path defi-
nitely performs a sufficiently strong lock acquire on the
same object in the same region. An acq rd() is redundant
if definitely preceded by acq rd() or acq wr() on the same
object; an acq wr() is redundant if definitely preceded by
acq wr() on the same object. A lock is guaranteed to be
in a compatible state at a redundant lock acquire; another
thread cannot change the state without triggering restart of
the current region. The compiler uses an intraprocedural,
flow-sensitive dataflow analysis (based on an analysis used
by prior work [10]) to identify redundant lock acquires.
Static data race detection. EnfoRSer’s transformations can
optionally use the results of sound static analysis that iden-
tifies all accesses that might be involved in data races. Re-
maining accesses are definitely data race free (DRF). An ac-
cess that is DRF does not need a corresponding lock acquire.
Prior work has also leveraged sound static race detection to
simplify dynamic analysis [15, 19, 30, 57].

Whole-program static analysis is somewhat impractical
in the real world since it relies on all code being available and
all call graph edges being known at analysis time, which is

difficult in the presence of dynamic class loading and reflec-
tion. An implementation could handle unexpected dynamic
behavior by dynamically recompiling all code to treat all
accesses as potentially racy, or by using incremental static
analysis to identify and recompile new potentially racy ac-
cesses. Our experiments sidestep this challenge by making
all code and calls known to the static analysis.
Optimizing region demarcation. We optimize region de-
marcation to take advantage of optimizations that remove
lock acquires. Optimized region demarcation distinguishes
between programmatic regions—regions delimited at bound-
ary points—and enforced regions—the regions whose atom-
icity is explicitly enforced by EnfoRSer’s atomicity trans-
formations. Optimized region demarcation starts and ends
an enforced region at the first and last lock acquire of a pro-
grammatic region, respectively. Because any memory ac-
cesses outside of these boundaries are guaranteed to be DRF
or guarded by locks earlier in the region, providing atomicity
for these enforced regions automatically guarantees atomic-
ity for programmatic regions.

An access that has no lock acquire but is inside of an en-
forced region must still be handled by the atomicity transfor-
mations: the idempotent transformation handles every pos-
sible store–load dependence in an enforced region, and the
speculation transformation backs up every store in an en-
forced region. Although the endpoint of an enforced region
may come before the end of a programmatic region, En-
foRSer does not treat the end of an enforced region as a safe
point, so a thread will not release locks between the end of
the enforced region and the end of the programmatic region.

6. Implementation
We have implemented EnfoRSer in Jikes RVM 3.1.3, a high-
performance Java virtual machine [5] that provides perfor-
mance competitive with commercial JVMs. We have made
our implementation publicly available.6

Although the implementation targets a managed language
VM, it should be possible to implement EnfoRSer’s design
for a native language such as C or C++. The main challenge
would be adapting Octet to a native language [10].
Modifying the compilers. Jikes RVM uses two just-in-time
dynamic compilers that perform method-based compilation.
The first time a method executes, the baseline compiler
compiles it directly from Java bytecode to machine code. If a
method becomes hot, the optimizing compiler recompiles it
at successively higher levels of optimization. The optimizing
compiler performs standard intraprocedural optimizations. It
performs aggressive method inlining but does not otherwise
perform interprocedural optimizations.

We modify the optimizing compiler to demarcate regions
and restrict reordering across regions throughout compila-
tion; to insert lock acquires (we use the publicly available
Octet implementation of lightweight locks [10]); and to per-
form EnfoRSer’s atomicity transformations on the optimiz-
ing compiler’s intermediate representation (IR).

6 http://www.jikesrvm.org/Research+Archive

The baseline compiler does not use an IR, making it
hard to implement atomicity transformations. Instead, in
baseline-compiled code only, our implementation simu-
lates the cost of enforcing SBRS without actually enforcing
SBRS. The baseline compiler inserts (1) lock acquires, (2)
instrumentation that logs each store in a memory-based undo
log, and (3) instrumentation that resets the undo log pointer
at each boundary point. This approach does not soundly en-
force SBRS since it does not perform rollback on region
conflicts. Since conflicts are infrequent and (by design) a
small fraction of time is spent executing baseline-compiled
code, this approach should closely approximate the perfor-
mance of a fully sound implementation.

The compiler performs EnfoRSer’s transformations on
application and library code. Since Jikes RVM is written
in Java, in a few cases VM code gets inlined into applica-
tion and library code. Our prototype implementation cannot
correctly handle inlined VM code that performs certain low-
level operations or that does not have safe points in loops. To
execute correctly, we identify and exclude 25 methods across
all benchmarks and 10 methods in the Java libraries from
EnfoRSer’s transformations, instead inserting only lock ac-
quires into these methods.
Demarcating regions. EnfoRSer demarcates regions at syn-
chronization operations (lock acquire, release, and wait;
thread fork and join), method calls, and loop back edges.
These are essentially the same program points that are GC-
safe points in Jikes RVM and other VMs. Since Jikes RVM
makes each loop header a safe point, the implementation
bounds regions at loop headers instead of back edges. To
simplify the implementation, we currently bound regions
along special control-flow edges for switch statements.

The optimizing compiler is able to identify all synchro-
nization operations when it compiles application and library
code, since synchronization in Java is part of the language.
The implementation does not bound regions at volatile vari-
able accesses, which does not affect progress guarantees.

Object allocations can trigger GC, so they are safe points
and thus boundary points in our implementation. A pro-
duction implementation could either define regions as being
bounded at allocation (non-array allocations already perform
a constructor call); defer GC past allocations; or specula-
tively hoist memory allocation above regions.
Retrying regions. A region must retry if another thread may
have performed accesses that conflict with the region’s ac-
cesses so far. This case can occur only if the region, while
waiting for coordination, responds to coordination requests
(Section 4.3). In the idempotent approach, lock acquires use
this criterion to decide whether to retry a region. However,
the speculation approach cannot easily use this criterion: a
region must not lose access to objects until after it executes
its undo block—at which point the region must re-execute—
so the decision to retry the region must be made before
the region responds to coordination requests and potentially
loses needed access to an object. The speculation approach
instead triggers retry whenever a lock acquire takes the slow

path. As a result, the idempotent approach provides lower
retry rates than speculation—but the more precise retry cri-
terion has a negligible performance impact (Section 7.3).

Retrying regions could lead to livelock, where conflicting
regions repeatedly cause each other to retry. EnfoRSer could
avoid livelock with standard techniques such as exponential
backoff. Livelock is not an issue in our experiments, presum-
ably because regions are short and conflicts are infrequent.
Runtime exceptions. A runtime exception (e.g., null pointer
exception) can cause a region to exit early. This behavior can
affect correctness for the idempotent approach since it re-
orders loads and stores, but we have not observed any prob-
lems in our experiments. We find that runtime exceptions
are sufficiently rare (experimental details are in an extended
technical report [50]) that just-in-time deoptimized recompi-
lation could handle them efficiently.

7. Evaluation
This section evaluates EnfoRSer’s run-time characteristics
and performance.

7.1 Methodology
Benchmarks. The experiments execute our modified Jikes
RVM on the multithreaded DaCapo benchmarks [6] versions
2006-10-MR2 and 9.12-bach (2009) with the large work-
load size (excluding programs Jikes RVM cannot run), dis-
tinguished by suffixes 6 and 9; and fixed-workload versions
of SPECjbb2000 and SPECjbb2005.7

Platform. We build a high-performance configuration of
Jikes RVM that adaptively optimizes the application as it
runs (FastAdaptive) and uses the default high-performance
garbage collector and adjusts the heap size automatically.

Experiments run on an AMD Opteron 6272 system with
eight 8-core processors running Linux 2.6.32. We limit ex-
periments to only four processors (32 cores) due to an
anomalous result with 64 cores where EnfoRSer actually
outperforms the baseline for some programs. (We find that
adding any kind of instrumentation can improve perfor-
mance, due to anomalies we have been able to attribute to
Linux thread scheduling decisions [10].)

We have also evaluated EnfoRSer on an Intel Xeon E5-
4620 system with four 8-core processors running Linux
2.6.32, in order to test EnfoRSer’s sensitivity to the system
architecture. On this platform, EnfoRSer adds nearly the
same overhead as on the AMD platform (within 1% relative
to baseline execution).
Static race detection. EnfoRSer can use any sound static
analysis to identify definitely data-race-free (DRF) accesses
(Section 5). We use the publicly available implementation of
Naik et al.’s 2006 race detection algorithm, Chord [44]. By
default, Chord is unsound (i.e., it misses races) because it
uses a may-alias lockset analysis.8 We thus disable lockset

7 http://www.spec.org/jbb200{0,5}, http://users.cecs.anu.

edu.au/~steveb/research/research-infrastructure/pjbb2005
8 We have confirmed that there is no available implementation of their 2007
algorithm, which uses conditional must-not-alias analysis to be sound [43].

Threads Insts. Insts. / Dyn. regions retried
Total Live executed region Idem. Spec.

eclipse6 18 12 5.6×1010 27 <0.01% <0.01%
hsqldb6 402 102 5.7×109 32 <0.01% 0.50%
lusearch6 65 65 5.7×109 31 <0.01% <0.01%
xalan6 9 9 8.5×1010 29 0.05% 1.07%
avrora9 27 27 3.8×1010 36 <0.01% 0.81%
jython9 3 3 8.5×1010 29 <0.01% <0.01%
luindex9 2 2 4.2×109 23 <0.01% <0.01%
lusearch9 c c 2.4×109 26 <0.01% <0.01%
pmd9 5 5 1.2×109 22 <0.01% 0.11%
sunflow9 2×c c 3.0×109 26 <0.01% 0.03%
xalan9 c c 9.9×109 23 0.37% 8.16%
pjbb2000 37 9 3.0×109 21 <0.01% 1.29%
pjbb2005 9 9 9.7×109 22 1.30% 17.91%

Table 2. Dynamic execution characteristics. A few programs
launch threads proportional to the number of cores c, which is 32
in our experiments.

Without static race detection With static race detection
0 1 2–3 4–7 ≥8 0 1 2–3 4–7 ≥8

eclipse6 9% 25% 10% 38% 17% 9% 25% 10% 38% 17%
hsqldb6 7% 14% 11% 60% 8% 9% 13% 11% 59% 8%
lusearch6 5% 44% 14% 29% 8% 22% 43% 14% 19% 2%
xalan6 15% 27% 5% 30% 23% 45% 21% 9% 11% 13%
avrora9 6% 32% 5% 19% 38% 8% 31% 5% 18% 38%
jython9 24% 35% 5% 28% 8% 73% 18% 0% 8% 1%
luindex9 2% 28% 9% 35% 26% 23% 32% 8% 26% 11%
lusearch9 3% 42% 10% 32% 12% 24% 44% 10% 17% 5%
pmd9 5% 45% 7% 31% 12% 37% 30% 4% 20% 7%
sunflow9 18% 22% 16% 25% 19% 34% 30% 14% 13% 8%
xalan9 15% 33% 6% 21% 25% 42% 30% 4% 11% 12%
pjbb2000 42% 3% 26% 24% 4% 44% 23% 22% 7% 4%
pjbb2005 14% 17% 24% 37% 8% 18% 23% 14% 38% 7%

Table 3. Percentage of dynamic regions executed with various
complexity (static accesses), without and with identifying statically
DRF accesses to optimize region demarcation.

analysis, using only Chord’s thread escape and thread fork–
join analyses to identify DRF accesses.

The programs we evaluate use reflection and custom
class loading, which present a challenge for static analysis.
To handle reflection, we use a feature of Chord that exe-
cutes the program to identify reflective call sites and targets.
Chord does not run eclipse6 correctly in our environment,
so EnfoRSer runs eclipse6 assuming all accesses are racy.
jython9 has custom-loaded classes that present a challenge
for Chord, so EnfoRSer assumes all accesses in custom-
loaded classes are racy. We cross-checked Chord’s results
with a dynamic race detector’s output; we found one class
(in jbb2005) that Chord does not analyze at all (for unknown
reasons), so EnfoRSer fully instruments this class.

Static analysis is a one-time cost, incurred only when the
program changes. In any case, Chord’s cost is low: analyzing
any of the programs we evaluate takes at most 90 seconds.
7.2 Run-Time Characteristics
The Threads columns of Table 2 report the total number of
threads created and the maximum number of live threads.

The table’s remaining columns report characteristics
of executed regions, averaged across 10 trials. The Insts.
columns report total dynamic IA-32 instructions and dy-
namic instructions per executed region, measured without

eclipse6

hsqldb6

lusearch6

xalan6

avrora9

jython9

luindex9

lusearch9

pmd9
sunflow9

xalan9

pjbb2000

pjbb2005

geomean

0

20

40

60

80

100

O
v

e
r
h

e
a

d
 (

%
)

o
v

e
r

u
n

m
o

d
if

ie
d

 J
V

M

Idempotent

Speculation

Speculation via log

119 104 100 129 126 129

Figure 6. Run-time overhead over an unmodified JVM of providing SBRS with EnfoRSer’s two atomicity transformations and speculation
that uses a log to simulate a stripped-down version of STM.

eclipse6

hsqldb6

lusearch6

xalan6

avrora9

jython9

luindex9

lusearch9

pmd9
sunflow9

xalan9

pjbb2000

pjbb2005

geomean

0

20

40

60

80

O
v
e
r
h

e
a

d
 (

%
)

o
v

e
r

u
n

m
o
d

if
ie

d
 J

V
M

Idempotent

Speculation

Speculation via log

119 84 132 119 129

Figure 7. Run-time overhead over an unmodified JVM when transformations use whole-program static analysis to identify definitely data-
race-free accesses. Otherwise, configurations are the same as Figure 6.

any EnfoRSer instrumentation. The programs each execute
billions of instructions, divided into regions that execute 21–
36 IA-32 instructions each on average. Across all programs,
each region executes 27 instructions on average. EnfoRSer’s
regions are comparable in size to DRFx’s statically bounded
regions (about 10 instructions per region [40]).

The last two columns show that the vast majority of re-
gions do not detect a conflict. The idempotent approach pro-
vides a substantially lower retry rate than the speculation ap-
proach, since the idempotent transformation uses a more pre-
cise retry check (Section 6), but we have found that making
the check more precise does not significantly improve the
idempotent approach’s performance. The program pjbb2005
has the highest retry rate; unsurprisingly it has the highest
rate of conflicts [10]. The high cost of coordination to handle
these conflicts leads to high overhead for both the idempo-
tent and speculation approaches (Section 7.3).

Table 3 evaluates the complexity of executed regions.
We measure a region’s complexity using the static count
of accesses in the region, after performing the shrinking
optimization from Section 5. Unsurprisingly, static data race
detection helps simplify regions, i.e., executed regions tend
to be less complex overall. Even so, all programs still rely
on EnfoRSer’s transformations for a significant number of
complex regions (i.e., regions with ≥2 static accesses).

7.3 Performance
Figure 6 shows the overhead EnfoRSer’s transformations
add over unmodified Jikes RVM, without making use of
static race detection. Each bar is the median of 15 trials (to
minimize effects of machine noise); each bar shows 95%

confidence intervals centered at the mean. The compiler du-
plicates instructions that are in multiple regions statically,
adding 7% alone (not shown). The idempotent and specula-
tion approaches add 43 and 36% total overhead, respectively.

The idempotent approach incurs costs to buffer and re-
play stores correctly and to check for aliasing at loads. Spec-
ulation is the better-performing approach since (in the com-
mon, non-conflicting case) it incurs only the cost of backing
up each store’s old value to a local variable. In a more ag-
gressive compiler, the idempotent approach might have an
advantage by enabling more intra-region reordering.

EnfoRSer adds the highest overhead for pjbb2005 (126–
129%). This overhead primarily comes from the lightweight
locks, which alone add 114% to pjbb2005 due to a relatively
high conflicting access rate [10], which leads to expensive
coordination among threads. EnfoRSer could achieve lower
overhead for high-conflict executions by making use of “hy-
brid” lightweight locks that adaptively avoid coordination
for high-conflict objects [13].

Static race detection. Figure 7 shows the same configura-
tions when the transformations make use of statically iden-
tified DRF accesses. Identifying DRF accesses eliminates
about a quarter of the overhead on average: the idempo-
tent and speculation transformations enforce SBRS at 32 and
27% overhead, respectively. Although using static race de-
tection seems to have a small adverse effect on idempotent
performance for pjbb2005, this effect is likely due to high
run-to-run variation for this program (we have confirmed
that the confidence intervals overlap).

Log-based speculation. The Speculation via log configura-
tion in Figures 6 and 7 measures a stripped-down version
of STM that uses memory-based undo logs instead of local
variables for backing up stores, but still relies on EnfoRSer’s
lightweight locks and efficient conflict detection. On aver-
age it adds 64 and 53% total overhead, without and with
sound static race detection, respectively, significantly more
than EnfoRSer’s speculation approach. The memory-based
log incurs these high costs despite adding just one of several
costs that STMs typically incur over EnfoRSer (Section 9).
Compilation time. The overheads in Figures 6 and 7 natu-
rally include the costs of just-in-time compilation. EnfoRSer
slows the optimizing compiler by performing additional
analyses and transformations, and by bloating the internal
representation (IR) and slowing downstream passes. Since
EnfoRSer’s analysis is intraprocedural, its complexity scales
well with program size. We find that compile time increases
over unmodified Jikes RVM by 2.5X and 2.1X without static
race detection, and 1.9X and 1.7X with static race detection,
for the idempotent and speculation approaches, respectively.
However, the effect of EnfoRSer’s compilation overhead on
overall execution time is modest: a few percent, relative to
baseline execution time.
Scalability. EnfoRSer’s overhead scales well when varying
the number of application threads. Results are available in
an extended technical report [50].
Summary. Overall, these results show that EnfoRSer en-
forces SBRS at a reasonable cost of 27% average overhead
(using the speculation approach with sound static race detec-
tion). To our knowledge, this represents the lowest reported
overhead of any kind of end-to-end RS enforcement on com-
modity systems. The best-performing prior work (which, ad-
mittedly, provides full-SFR RS) requires additional avail-
able cores to avoid adding over 100% overhead [45]—a fun-
damentally different, replication-based approach that would
not benefit from identifying statically DRF accesses.

8. Avoiding Erroneous Behavior
This section describes a limited study of one of SBRS’s
potential benefits: its ability to automatically avoid errors
caused by data races. To help expose such errors, we have
implemented adversarial memory (AM), a dynamic analy-
sis that helps expose behaviors that are allowed under the
Java memory model [22, 39]. (Similar behaviors are possible
under other language memory models including C++’s [8].)
Under AM, each load from memory can choose from a
buffer of stored values; the load may choose any value that
does not violate established happens-before relationships.
AM instruments potentially racy memory locations, identi-
fied by a sound dynamic race detector based on the Fast-
Track algorithm [9, 21].

We first identify potential errors by executing programs
with AM. We use the DaCapo and SPECjbb benchmarks,
as well as the smaller Java Grande benchmarks [54] eval-
uated by the AM paper [22]. Since the EnfoRSer imple-
mentation enforces SBRS only in Jikes RVM’s optimizing

Erroneous behavior
JMM SC SBRS
(AM (perturbation & (AM +
alone) inspection) EnfoRSer)

hsqldb6 Infinite loop None None
sunflow9 Null ptr exception None None
jbb2000 Corrupt output Corrupt output None
jbb2000 Infinite loop None None
sor Infinite loop None None
lufact Infinite loop None None
moldyn Infinite loop None None
raytracer Fails validation Fails validation None

Table 4. Errors exposed by adversarial memory (AM) that are
possible under the Java memory model, and whether the errors are
possible under SC and SBRS.

compiler, our experiments forcibly compile all methods with
the optimizing compiler. Table 4 reports a row for each er-
ror exposed by AM. AM exposes two different errors in
SPECjbb2000. Each result is repeatable across many trials.
The JMM column shows erroneous behaviors allowed under
the Java memory model, exposed using AM.

To evaluate EnfoRSer’s ability to avoid these errors, we
use AM and EnfoRSer in the same execution. The compiler
performs either of EnfoRSer’s atomicity transformations,
followed by AM’s instrumentation of racy loads and stores.
We integrate EnfoRSer and AM by making AM aware of the
happens-before edges established by EnfoRSer’s locks (e.g.,
coordination between threads). The SBRS column shows
that EnfoRSer successfully avoids all erroneous behavior, by
providing atomicity of statically bounded regions even in the
presence of data races.

We have also determined whether these erroneous behav-
iors are possible under sequential consistency (SC). Despite
the fact that these errors do not occur in typical runs (i.e.,
runs without AM), two of the errors are still possible under
SC (the SC column):

SPECjbb2000 uses unsynchronized updates to a shared
(64-bit) long field to keep track of elapsed time in millisec-
onds. Java makes no guarantees for the atomicity of accesses
to the low and high 32 bits of a long [22, 34]. We confirmed
an atomicity violation by inspecting the code. We were not
able to reproduce a violation since it would take a very long
time to overflow the counter’s low bits (AM in fact exposes a
visibility error by reading a stale value). SBRS avoids the er-
rors since it inherently makes accesses to long fields atomic.

In raytracer, multiple threads perform additions to a
shared int field called checksum1:

checksum1 = checksum1 + val; // val is thread local

Under SC, the program still computes an incorrect checksum
if two threads’ load–add–store operations interleave. SBRS
eliminates the error by making the load–add–store atomic.

SC eliminates the other errors exposed by AM. We find
that five out of six of these errors are visibility errors: a thread
sees a “stale” value not possible under an SC execution.
For each of these errors, a loop cannot terminate because

it repeatedly sees a shared variable’s stale value instead of
an up-to-date value. The sixth error is in sunflow9, which
throws an exception when it reads and then dereferences a
stale value of null. We have been unable to expose this error
under SC (or SBRS), suggesting that it is an SC violation.

In general, many real-world atomicity violations are pos-
sible under SC (e.g., [35, 36, 61]). If the region that requires
atomicity is small enough, SBRS eliminates the error.

9. Related Work
Section 2 covered related work on enforcing RS-based mem-
ory models. This section covers other approaches.
Software transactional memory. Transactional memory
(TM) guarantees atomicity of programmer-annotated code
regions [25, 26]. EnfoRSer’s approach is analogous to us-
ing software TM (STM) [25] to provide atomicity of every
statically bounded region. In particular, EnfoRSer’s idem-
potent transformation behaves similarly to a lazy-versioning
STM, while its speculation transformation behaves similarly
to an eager-versioning STM. However, EnfoRSer provides
atomicity much more efficiently than STM for three reasons:

1. STMs maintain read/write sets (i.e., the last transaction(s)
to read and write each object) to detect precisely whether
an access conflicts with another thread’s ongoing transac-
tion. In contrast, EnfoRSer avoids maintaining read/write
sets, at the cost of false region conflicts. The rollbacks
these false conflicts trigger incur only a small penalty
since statically bounded regions are short.

2. STMs that use eager or lazy versioning maintain undo
logs or redo logs, respectively. At each store, the STM
appends an entry to the memory-based log containing the
address of the stored-to location and its old or new value.
EnfoRSer can instead map each store to a dedicated local
variable for deferring or backing up the store, because
regions are statically bounded.

3. The locks used by EnfoRSer are a lighter-weight mech-
anism for conflict detection than STMs typically use, as
long as relatively few accesses conflict. (Recent work in-
troduces an STM that uses similar lightweight locks [60].)

Hardware TM. Hammond et al. introduce a memory model
and associated hardware where all code is in transactions [24].
However, manufacturers have been reluctant to incorporate
general-purpose hardware TM (HTM) support into already-
complex cache and memory subsystems.

Intel’s recently released Haswell architecture provides
restricted transactional memory (RTM) support with an up-
per bound on shared-memory accesses in a transaction [59].
It might seem at first that RTM would be well suited to
enforcing SBRS. However, two studies find that the over-
head of an RTM transaction is substantial: the startup and
tear-down costs of each transaction are about the same as
three compare-and-swap operations [48, 59]. In contrast,
EnfoRSer’s approach avoids atomic operations at most ac-
cesses, most likely achieving substantially lower overhead
than an approach based on atomic operations or RTM trans-

actions (except perhaps for high-conflict workloads), al-
though an empirical comparison is beyond the scope of this
paper. Future limited HTM implementations might provide
lower-overhead transactions, enabling efficient support for
SBRS. In the meantime, EnfoRSer can provide reasonably
efficient support for SBRS in commodity systems.
Checking for region conflicts. Prior work checks region
conflict freedom (RCF) in order to detect SC violations
and/or data races [18, 23, 37, 40, 52]. Regions can be de-
limited only by synchronization operations [18, 37] or stat-
ically bounded to simplify the hardware [40, 52]. These ap-
proaches rely on custom hardware [23, 37, 40, 52] or add
high overhead [18]. Furthermore, checking RCF can gener-
ate errors unexpectedly, even for executions for which RS is
not violated. In contrast, EnfoRSer enforces RCF and thus
RS in commodity systems.
Enforcing atomicity in hardware. Prior work relies on cus-
tom hardware support to enforce atomicity of regions. Atom-
Aid avoids some atomicity violations [38], while BulkCom-
piler focuses on providing SC [4]. Their regions do not cor-
respond to well-defined regions at the source-code level
(which could help programmers and analyses), although
they could potentially be made to do so.
Sequential consistency. Providing end-to-end SC requires
restricting reordering in both the compiler and hardware.
Whole-program static analysis called delay sets detects pos-
sible SC violations and introduces memory fences conserva-
tively (e.g., [51, 55]).

Hardware can reorder loads and stores speculatively
(e.g., [32, 33, 47]). Compilers can be modified to enforce
SC, with additional hardware support providing end-to-end
SC [41, 53]. Providing end-to-end SC—a weaker property
than SBRS—seems destined to add nontrivial overhead due
to restricting reordering by the compiler and hardware.
Idempotent execution. De Kruijf and Sankaralingam trans-
form regions to execute idempotently [17]. Their approach
targets hardware fault recovery and thus does not detect
shared-memory conflicts. The approach handles def–use
dependences but not store–load dependences—the primary
challenge for EnfoRSer’s idempotent transformation.

10. Conclusion
EnfoRSer leverages hybrid static–dynamic analysis to en-
sure that statically bounded, synchronization-free regions
execute atomically on commodity systems. By providing
reasonable efficiency in commodity systems, EnfoRSer can
help make SBRS the default memory model, spurring devel-
opment of new hardware for even faster SBRS support.

Acknowledgments
We thank our shepherd, Serdar Tasiran, and the anonymous
reviewers for detailed and insightful suggestions for improv-
ing this work. Thanks to Hans Boehm, Man Cao, Meisam
Fathi Salmi, Jipeng Huang, Brandon Lucia, Todd Millstein,
Madan Musuvathi, Andrew Myers, Satish Narayanasamy,
and Chris Stone for valuable discussions, suggestions, and
other feedback; and to Mayur Naik for help with Chord.

References
[1] S. V. Adve and H.-J. Boehm. Memory Models: A Case for

Rethinking Parallel Languages and Hardware. CACM, 53:90–
101, 2010.

[2] S. V. Adve and M. D. Hill. Weak Ordering—A New Defini-
tion. In ISCA, pages 2–14, 1990.

[3] S. V. Adve, M. D. Hill, B. P. Miller, and R. H. B. Netzer.
Detecting Data Races on Weak Memory Systems. In ISCA,
pages 234–243, 1991.

[4] W. Ahn, S. Qi, M. Nicolaides, J. Torrellas, J.-W. Lee, X. Fang,
S. Midkiff, and D. Wong. BulkCompiler: High-performance
Sequential Consistency through Cooperative Compiler and
Hardware Support. In MICRO, pages 133–144, 2009.

[5] B. Alpern, S. Augart, S. M. Blackburn, M. Butrico, A. Cocchi,
P. Cheng, J. Dolby, S. Fink, D. Grove, M. Hind, K. S. McKin-
ley, M. Mergen, J. E. B. Moss, T. Ngo, and V. Sarkar. The
Jikes Research Virtual Machine Project: Building an Open-
Source Research Community. IBM Systems Journal, 44:399–
417, 2005.

[6] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton,
S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B.
Moss, A. Phansalkar, D. Stefanović, T. VanDrunen, D. von
Dincklage, and B. Wiedermann. The DaCapo Benchmarks:
Java Benchmarking Development and Analysis. In OOPSLA,
pages 169–190, 2006.

[7] H.-J. Boehm. Position paper: Nondeterminism is Unavoid-
able, but Data Races are Pure Evil. In RACES, pages 9–14,
2012.

[8] H.-J. Boehm and S. V. Adve. Foundations of the C++ Con-
currency Memory Model. In PLDI, pages 68–78, 2008.

[9] M. D. Bond, K. E. Coons, and K. S. McKinley. Pacer:
Proportional Detection of Data Races. In PLDI, pages 255–
268, 2010.

[10] M. D. Bond, M. Kulkarni, M. Cao, M. Zhang, M. Fathi Salmi,
S. Biswas, A. Sengupta, and J. Huang. Octet: Capturing
and Controlling Cross-Thread Dependences Efficiently. In
OOPSLA, pages 693–712, 2013.

[11] C. Boyapati, R. Lee, and M. Rinard. Ownership Types for
Safe Programming: Preventing Data Races and Deadlocks. In
OOPSLA, pages 211–230, 2002.

[12] S. Burckhardt and M. Musuvathi. Effective Program Verifi-
cation for Relaxed Memory Models. In CAV, pages 107–120,
2008.

[13] M. Cao, M. Zhang, and M. D. Bond. Drinking from Both
Glasses: Adaptively Combining Pessimistic and Optimistic
Synchronization for Efficient Parallel Runtime Support. In
WoDet, 2014.

[14] L. Ceze, J. Devietti, B. Lucia, and S. Qadeer. A Case for
System Support for Concurrency Exceptions. In HotPar,
2009.

[15] J.-D. Choi, K. Lee, A. Loginov, R. O’Callahan, V. Sarkar,
and M. Sridharan. Efficient and Precise Datarace Detection
for Multithreaded Object-Oriented Programs. In PLDI, pages
258–269, 2002.

[16] R. Chugh, J. W. Voung, R. Jhala, and S. Lerner. Dataflow
Analysis for Concurrent Programs using Datarace Detection.

In PLDI, pages 316–326, 2008.

[17] M. de Kruijf and K. Sankaralingam. Idempotent Code Gen-
eration: Implementation, Analysis, and Evaluation. In CGO,
pages 1–12, 2013.

[18] L. Effinger-Dean, B. Lucia, L. Ceze, D. Grossman, and H.-J.
Boehm. IFRit: Interference-Free Regions for Dynamic Data-
Race Detection. In OOPSLA, pages 467–484, 2012.

[19] T. Elmas, S. Qadeer, and S. Tasiran. Goldilocks: A Race and
Transaction-Aware Java Runtime. In PLDI, pages 245–255,
2007.

[20] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The Program
Dependence Graph and Its Use in Optimization. TOPLAS,
9(3):319–349, 1987.

[21] C. Flanagan and S. N. Freund. FastTrack: Efficient and Precise
Dynamic Race Detection. In PLDI, pages 121–133, 2009.

[22] C. Flanagan and S. N. Freund. Adversarial Memory For
Detecting Destructive Races. In PLDI, pages 244–254, 2010.

[23] K. Gharachorloo and P. B. Gibbons. Detecting Violations of
Sequential Consistency. In SPAA, pages 316–326, 1991.

[24] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D.
Davis, B. Hertzberg, M. K. Prabhu, H. Wijaya, C. Kozyrakis,
and K. Olukotun. Transactional Memory Coherence and Con-
sistency. In ISCA, pages 102–113, 2004.

[25] T. Harris and K. Fraser. Language Support for Lightweight
Transactions. In OOPSLA, pages 388–402, 2003.

[26] M. Herlihy and J. E. B. Moss. Transactional Memory: Ar-
chitectural Support for Lock-Free Data Structures. In ISCA,
pages 289–300, 1993.

[27] S. Horwitz, T. Reps, and D. Binkley. Interprocedural Slicing
Using Dependence Graphs. In PLDI, pages 35–46, 1988.

[28] L. Lamport. Time, Clocks, and the Ordering of Events in a
Distributed System. CACM, 21(7):558–565, 1978.

[29] L. Lamport. How to Make a Multiprocessor Computer That
Correctly Executes Multiprocess Programs. IEEE Computer,
28:690–691, 1979.

[30] D. Lee, P. M. Chen, J. Flinn, and S. Narayanasamy. Chimera:
Hybrid Program Analysis for Determinism. In PLDI, pages
463–474, 2012.

[31] D. Lee, B. Wester, K. Veeraraghavan, S. Narayanasamy, P. M.
Chen, and J. Flinn. Respec: Efficient Online Multiprocessor
Replay via Speculation and External Determinism. In ASP-
LOS, pages 77–90, 2010.

[32] C. Lin, V. Nagarajan, and R. Gupta. Efficient Sequential
Consistency Using Conditional Fences. In PACT, pages 295–
306, 2010.

[33] C. Lin, V. Nagarajan, R. Gupta, and B. Rajaram. Efficient
Sequential Consistency via Conflict Ordering. In ASPLOS,
pages 273–286, 2012.

[34] T. Lindholm and F. Yellin. The Java Virtual Machine Specifi-
cation. Prentice Hall PTR, 2nd edition, 1999.

[35] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from Mistakes:
A Comprehensive Study on Real World Concurrency Bug
Characteristics. In ASPLOS, pages 329–339, 2008.

[36] S. Lu, J. Tucek, F. Qin, and Y. Zhou. AVIO: Detecting
Atomicity Violations via Access-Interleaving Invariants. In
ASPLOS, pages 37–48, 2006.

[37] B. Lucia, L. Ceze, K. Strauss, S. Qadeer, and H.-J. Boehm.
Conflict Exceptions: Simplifying Concurrent Language Se-
mantics with Precise Hardware Exceptions for Data-Races. In
ISCA, pages 210–221, 2010.

[38] B. Lucia, J. Devietti, K. Strauss, and L. Ceze. Atom-Aid:
Detecting and Surviving Atomicity Violations. In ISCA, pages
277–288, 2008.

[39] J. Manson, W. Pugh, and S. V. Adve. The Java Memory
Model. In POPL, pages 378–391, 2005.

[40] D. Marino, A. Singh, T. Millstein, M. Musuvathi, and
S. Narayanasamy. DRFx: A Simple and Efficient Memory
Model for Concurrent Programming Languages. In PLDI,
pages 351–362, 2010.

[41] D. Marino, A. Singh, T. Millstein, M. Musuvathi, and
S. Narayanasamy. A Case for an SC-Preserving Compiler.
In PLDI, pages 199–210, 2011.

[42] M. Musuvathi and S. Qadeer. Iterative Context Bounding
for Systematic Testing of Multithreaded Programs. In PLDI,
pages 446–455, 2007.

[43] M. Naik and A. Aiken. Conditional Must Not Aliasing for
Static Race Detection. In POPL, pages 327–338, 2007.

[44] M. Naik, A. Aiken, and J. Whaley. Effective Static Race
Detection for Java. In PLDI, pages 308–319, 2006.

[45] J. Ouyang, P. M. Chen, J. Flinn, and S. Narayanasamy. ...and
region serializability for all. In HotPar, 2013.

[46] S. Park, Y. Zhou, W. Xiong, Z. Yin, R. Kaushik, K. H. Lee, and
S. Lu. PRES: Probabilistic Replay with Execution Sketching
on Multiprocessors. In SOSP, pages 177–192, 2009.

[47] P. Ranganathan, V. Pai, and S. Adve. Using Speculative
Retirement and Larger Instruction Windows to Narrow the
Performance Gap between Memory Consistency Models. In
SPAA, page pages, 1997.

[48] C. G. Ritson and F. R. Barnes. An Evaluation of Intel’s
Restricted Transactional Memory for CPAs. In CPA, pages
271–292, 2013.

[49] M. Ronsse and K. De Bosschere. RecPlay: A Fully Integrated
Practical Record/Replay System. TOCS, 17:133–152, 1999.

[50] A. Sengupta, S. Biswas, M. Zhang, M. D. Bond, and
M. Kulkarni. Hybrid Static–Dynamic Analysis for Stati-

cally Bounded Region Serializability. Technical Report OSU-
CISRC-11/12-TR18, Computer Science & Engineering, Ohio
State University, 2015. http://www.cse.ohio-state.

edu/~mikebond/papers.html#EnfoRSer.

[51] D. Shasha and M. Snir. Efficient and Correct Execution of
Parallel Programs that Share Memory. TOPLAS, 10(2):282–
312, 1988.

[52] A. Singh, D. Marino, S. Narayanasamy, T. Millstein, and
M. Musuvathi. Efficient Processor Support for DRFx, a Mem-
ory Model with Exceptions. In ASPLOS, pages 53–66, 2011.

[53] A. Singh, S. Narayanasamy, D. Marino, T. Millstein, and
M. Musuvathi. End-to-End Sequential Consistency. In ISCA,
pages 524–535, 2012.

[54] L. A. Smith, J. M. Bull, and J. Obdrzálek. A Parallel Java
Grande Benchmark Suite. In SC, pages 8–8, 2001.

[55] Z. Sura, X. Fang, C.-L. Wong, S. P. Midkiff, J. Lee, and
D. Padua. Compiler Techniques for High Performance Se-
quentially Consistent Java Programs. In PPoPP, pages 2–13,
2005.

[56] K. Veeraraghavan, D. Lee, B. Wester, J. Ouyang, P. M. Chen,
J. Flinn, and S. Narayanasamy. DoublePlay: Parallelizing
Sequential Logging and Replay. In ASPLOS, pages 15–26,
2011.

[57] C. von Praun and T. R. Gross. Static Conflict Analysis for
Multi-Threaded Object-Oriented Programs. In PLDI, pages
115–128, 2003.

[58] J. Ševčı́k and D. Aspinall. On Validity of Program Transfor-
mations in the Java Memory Model. In ECOOP, pages 27–51,
2008.

[59] R. M. Yoo, C. J. Hughes, K. Lai, and R. Rajwar. Performance
Evaluation of Intel Transactional Synchronization Extensions
for High-Performance Computing. In SC, pages 19:1–19:11,
2013.

[60] M. Zhang, J. Huang, M. Cao, and M. D. Bond. LarkTM:
Efficient, Strongly Atomic Software Transactional Memory.
In PPoPP, 2015. To appear.

[61] W. Zhang, M. de Kruijf, A. Li, S. Lu, and K. Sankar-
alingam. ConAir: Featherweight Concurrency Bug Recovery
via Single-threaded Idempotent Execution. In ASPLOS, pages
113–126, 2013.

