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Abstract
Atomicity is a key correctness property that allows programmers
to reason about code regions in isolation. However, programs often
fail to enforce atomicity correctly, leading to atomicity violations
that are difficult to detect. Dynamic program analysis can detect
atomicity violations based on an atomicity specification, but exist-
ing approaches slow programs substantially.

This paper presents DoubleChecker, a novel sound and precise
atomicity checker whose key insight lies in its use of two new coop-
erating dynamic analyses. Its imprecise analysis tracks cross-thread
dependences soundly but imprecisely with significantly better per-
formance than a fully precise analysis. Its precise analysis is more
expensive but only needs to process a subset of the execution iden-
tified as potentially involved in atomicity violations by the impre-
cise analysis. If DoubleChecker operates in single-run mode, the
two analyses execute in the same program run, which guarantees
soundness and precision but requires logging program accesses to
pass from the imprecise to the precise analysis. In multi-run mode,
the first program run executes only the imprecise analysis, and a
second run executes both analyses. Multi-run mode trades accuracy
for performance; each run of multi-run mode outperforms single-
run mode, but can potentially miss violations.

We have implemented DoubleChecker and an existing state-of-
the-art atomicity checker called Velodrome in a high-performance
Java virtual machine. DoubleChecker’s single-run mode signifi-
cantly outperforms Velodrome, while still providing full soundness
and precision. DoubleChecker’s multi-run mode improves perfor-
mance further, without significantly impacting soundness in prac-
tice. These results suggest that DoubleChecker’s approach is a
promising direction for improving the performance of dynamic
atomicity checking over prior work.
Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification—reliability; D.2.5 [Software
Engineering]: Testing and Debugging—monitors, testing tools;
D.3.4 [Programming Languages]: Processors—compilers, run-
time environments
Keywords atomicity checking; dynamic program analysis
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1. Introduction
Modern multicore hardware trends have made parallelism neces-
sary for performance, but developing parallel programs that are
correct and scalable is notoriously challenging. Concurrency bugs
have caused several high-profile failures (e.g., [33]), a testament to
the fact that concurrency errors are present even in well-tested code
(e.g., [15]). According to a study of real-world concurrency bugs,
65% of concurrency errors are due to atomicity violations [23].

Atomicity is a fundamental non-interference property that eases
reasoning about program behavior in multithreaded programs. For
programming language semantics, atomicity is synonymous with
serializability: program execution must be equivalent to some se-
rial execution of atomic regions. That is, the code block’s execu-
tion appears not to be interleaved with statements from other con-
currently executing threads. Programmers can thus reason about
atomic regions without considering effects of other threads. How-
ever, modern general-purpose languages provide crude support for
enforcing atomicity—programmers are basically stuck using locks
to control how threads’ shared-memory accesses can interleave.
Programmers try to maximize scalability by minimizing synchro-
nization, often mistakenly writing code that does not correctly en-
force needed atomicity properties.

An atomicity specification denotes particular code regions that
are expected to execute atomically. Program analysis can check
atomicity by checking whether a program conforms to the atom-
icity specification. A violation indicates that the program or speci-
fication is wrong (or both). Writing an atomicity specification may
seem burdensome, but prior work shows that specifications can be
derived mostly automatically [11, 14].
Existing analyses. Static analysis can check atomicity but is inher-
ently imprecise, and type-based approaches rely on annotations [8,
10, 13, 15]. Existing dynamic analyses are precise but slow pro-
grams by up to an order of magnitude or more [9, 11, 14, 24, 35–
37]. Dynamic approaches incur high costs to track cross-thread de-
pendences, which is especially expensive because it requires in-
serting intrusive synchronization to ensure correctness. We com-
pare most closely with the state-of-the-art Velodrome algorithm,
which soundly and precisely checks conflict serializability, a suffi-
cient condition for serializability [14]. Velodrome slows programs
by about an order of magnitude on average [14], mainly because of
the high cost of identifying cross-thread data dependences soundly
and precisely (Section 2).
Motivation. Atomicity violations are common but serious errors
that are sensitive to inputs, environments, and thread interleavings,
so violations manifest unexpectedly and only in certain settings.
Low-overhead checking is needed in order to use it liberally to
find bugs during in-house, alpha, and beta testing, and perhaps
even some production settings. Greathouse et al. note that high
dynamic analysis overheads “reduce the degree to which programs
can be tested within a reasonable amount of time. Beyond that,



high overheads slow debugging efforts, as repeated runs of the
program to hunt for root causes and verify fixes also suffer these
slowdowns” [17]. Our goal is to reduce the cost of sound and
precise atomicity checking significantly in order to increase its
practicality for various use cases.

Our Approach
This paper presents a sound and precise dynamic conflict serial-
izability checker called DoubleChecker that significantly reduces
overhead compared with existing state-of-the-art detectors. The
key insight of DoubleChecker lies in its dual-analysis approach
that avoids the high costs of precisely tracking cross-thread depen-
dences and performing synchronized metadata updates, by over-
approximating dependences between transactions (a transaction is
a dynamically executing atomic region) and then recovering preci-
sion only for those transactions that might be involved in violations.

DoubleChecker achieves low overhead by staging work be-
tween two new analyses, one imprecise and the other precise. The
imprecise analysis constructs a graph that soundly but imprecisely
captures dependences among transactions. The imprecise analysis
(1) detects cross-thread dependences by extending an existing con-
currency control mechanism [3]; (2) computes dependence edges
that soundly imply the true cross-thread dependences; (3) detects
cycles in the graph, which indicate potential atomicity violations
and are a superset of the true (precise) cycles; and (4) (when the
precise analysis executes in the same run as the imprecise analy-
sis) captures enough information about program accesses to allow
reconstruction of precise dependences. The precise analysis com-
putes precise cross-thread dependences and checks for cycles in a
precise dependence graph. However, the precise analysis processes
only those transactions that the imprecise analysis identified as be-
ing involved in a cycle. In practice, these transactions are a reason-
able overapproximation of the precise cycles, eliminating most of
the expensive work that would otherwise normally be performed
by any sound and precise analysis.

DoubleChecker supports two execution modes. In single-run
mode, the imprecise and precise analyses operate on the same pro-
gram execution. Single-run mode requires the imprecise analysis
to record all program accesses so that the precise analysis can de-
termine the precise dependences among the transactions identified
by the imprecise analysis. Single-run mode is thus fully sound and
precise: it detects all atomicity violations in an execution.

In multi-run mode, the first and second runs operate on differ-
ent program runs. The first run executes only the imprecise analy-
sis, while the second run executes both the imprecise and precise
analyses (similar to single-run mode). The first run is thus impre-
cise whereas the second run is precise. The first run passes static
program information about imprecise cycles to the second run to
help reduce the instrumentation introduced by the second run. The
multi-run mode is unsound since the first and second runs operate
on different program executions, which could differ due to different
program inputs and thread interleavings. The multi-run mode can
thus miss atomicity violations that occur in either program run.

We have implemented DoubleChecker and prior work’s Velo-
drome in a high-performance Java virtual machine. We evaluate
correctness, performance, and other characteristics of Double-
Checker on large, real-world multithreaded programs, and com-
pare with Velodrome. In single-run mode, DoubleChecker is a fully
sound and precise analysis that slows programs by 3.6X on aver-
age, a significant improvement over Velodrome’s 6.1X slowdown.
A limitation of single-run mode is that the imprecise analysis must
log precise information about reads and writes, which not only
slows execution, but also adds high memory overhead, sometimes
exhausting the virtual memory of our 32-bit platform. Double-
Checker’s multi-run mode does not guarantee soundness for either
run, although we show it can find a high fraction of atomicity vi-

olations in practice. Its first and second runs slow programs by
1.9X and 2.4X, respectively. As such, the overhead added by Dou-
bleChecker in its single- and multi- run modes is 1.9 and 3.7–5.6
times less than Velodrome’s, respectively. These results suggest
that DoubleChecker’s novel approach is a promising direction for
providing significantly better performance for dynamic atomicity
checking.
Contributions. This paper makes the following contributions:

• a novel sound and precise dynamic atomicity checker based on
using two new, cooperating analyses:

1. an imprecise analysis that shows it can be cheaper to over-
approximate dependence edges rather than compute them
precisely, and thus detect cycles whose transactions are a
superset of the true (precise) cycles, and

2. a precise analysis that processes an execution history of only
those transactions that are involved in potential cycles;

• two modes of execution that provide two choices for balancing
soundness and performance;

• publicly available implementations of DoubleChecker and
Velodrome; and

• an evaluation that shows DoubleChecker outperforms Velo-
drome significantly, with multi-run mode providing better per-
formance without sacrificing much soundness in practice.

2. Background: Checking Conflict Serializability
Velodrome is a dynamic analysis that checks conflict serializabil-
ity soundly and precisely [14]. (A related dynamic approach also
checks conflict serializability soundly and precisely [9]; Section 6.)
Each code region that is supposed to execute atomically (according
to the atomicity specification) executes as a transaction. Other ac-
cesses each execute as a unary transaction. Velodrome’s dynamic
analysis builds a graph of transactions at run time. When a new
(regular or unary) transaction starts, the analysis adds an intra-
thread dependence edge from the thread’s prior transaction to the
new transaction. At each access, the analysis detects cross-thread
data dependences: write–read, read–write, and write–write depen-
dences between threads, as well as release–acquire synchronization
dependences. (Although treating synchronization edges as cross-
thread dependences can lead to false positives when checking con-
flict serializability, as Section 6 discusses, DoubleChecker follows
Velodrome and includes synchronization edges.) Velodrome adds
cross-thread dependence edges between transactions as the pro-
gram executes. It detects cycles in the graph; a cycle is a sound
and precise condition for a conflict serializability violation.

Velodrome slows programs by 12.7X in prior work [14] and
6.1X using our Velodrome implementation and experiments. These
slowdowns are due largely to tracking cross-thread dependences
soundly and precisely, which has two main costs. First, tracking
dependences involves maintaining the last transaction to write, and
each thread’s last transaction to read, each variable. Second, to pre-
serve correctness in the face of accesses potentially involved in data
races, the analysis must use atomic operations and memory fences
to ensure that an access and its corresponding analysis execute to-
gether atomically. Atomic operations and memory fences slow ex-
ecution by limiting reordering and serializing in-flight instructions
and by triggering remote cache misses.

3. Design of DoubleChecker
This section describes our dynamic conflict serializability checker
that uses two cooperating dynamic analyses to check atomicity
without incurring the full costs of tracking cross-thread depen-
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Figure 1. An overview of DoubleChecker’s two execution modes.

dences soundly and precisely for all program accesses. Following
an overview of DoubleChecker’s analyses and execution modes,
Section 3.2 describes the imprecise analysis, and Section 3.3 de-
scribes the precise analysis.

3.1 Overview
DoubleChecker’s imprecise analysis, called imprecise cycle detec-
tion (ICD), monitors all program accesses to track cross-thread de-
pendences soundly but imprecisely, i.e., the dependences imply the
execution’s actual dependences as well as other false dependences.
ICD is inherently imprecise mainly because it identifies depen-
dence edges by tracking shared-memory “ownership”; a transfer
of ownership indicates a possible dependence, but does not guaran-
tee a dependence nor identify the source of the dependence edge.
ICD constructs a dependence graph whose nodes are transactions
and whose edges correspond to the cross-thread dependences that
ICD detects. ICD checks for cycles in this graph.

The second analysis, precise cycle detection (PCD), is a sound
and precise analysis that limits its monitoring to a subset of all
transactions: the transactions identified by ICD as being involved
in potential cycles—which preserves soundness because every pre-
cise cycle’s transactions will always be a subset of some (poten-
tially imprecise) cycle identified by ICD. Note that PCD is not a
standalone analysis: it performs its analysis on an execution’s ac-
cess log, provided by ICD.

DoubleChecker can operate in either of two modes. Figure 1
overviews the two modes of DoubleChecker.
Single-run mode. In single-run mode, ICD and PCD run on the
same program execution. ICD logs all program reads and writes
and ordering dependences between them, so PCD can identify
precise cycles. A key cost of single-run mode is logging all program
accesses.
Multi-run mode. In testing and deployment situations, programs
are run multiple times with various inputs. DoubleChecker’s multi-
run mode takes advantage of this situation by splitting work across
multiple program runs.1 One run can identify transactions that
might be involved in a dependence cycle, and another run can focus
its monitoring on this set of transactions. In contrast to single-run
mode, multi-run mode avoids logging all accesses during the first
run by instead performing precise checking during a second run of
the program. The first run of multi-run mode uses only ICD. This
run identifies all regular (non-unary) transactions that are involved

1 Prior bug detection work has split work across runs using sampling
(e.g., [22]), which is complementary to our work.

in imprecise cycles according to their static starting locations (e.g.,
method signatures). Rather than identifying precisely which unary
transactions were involved in cycles, the first run identifies only
whether any unary transactions were involved in any cycle. It would
be expensive to identify unary transactions precisely, since it would
essentially require recording the program location of every non-
transactional access.

The second run takes this static transaction information—set of
regular transactions plus a boolean about unary transactions—as in-
put, and limits its analysis to the identified regular transactions and
instruments all unary transactions if the unary transaction boolean
is true. We find this approximation yields acceptable performance
in practice since most accesses are not unary, i.e., they occur in-
side regular transactions. In our experiments, the second run uses
both ICD and PCD—similar to the single-run mode—for the best
performance, but the second run can also potentially use a different
precise checker such as Velodrome.

In multi-run mode, DoubleChecker guarantees soundness if the
two program runs execute identically. In practice, two executions
in the wild will take different inputs and execute different thread
interleavings. The set of (static) transactions identified by the first
run may not be involved in a cycle in the second run; similarly,
the second run may execute transactional cycles not present in the
first run. To increase efficacy, the second run can take as input all
transactions identified across multiple executions of the first run.
The multi-run mode can still be effective in practice if the same
regions tend to be involved in cycles across multiple runs.

3.2 Imprecise Cycle Detection
Imprecise cycle detection (ICD) is a dynamic analysis that ana-
lyzes all program execution in order to detect cycles among trans-
actions. ICD constructs a sound but imprecise graph called the
imprecise dependence graph (IDG) to model dependences among
the transactions in a multithreaded program. The nodes in an IDG
are regular transactions (which correspond to atomic regions) or
unary transactions (which correspond to single accesses outside of
atomic regions). A cross-thread edge between two nodes in differ-
ent threads indicates a (potentially imprecise) cross-thread depen-
dence between the transactions. Two consecutive nodes (i.e., trans-
actions) in the same thread are connected by an intra-thread edge
that effectively captures any intra-thread dependences.

We first describe an existing concurrency control mechanism
that ICD extends to help detect cross-thread dependences but that
makes detection inherently imprecise. We then describe how ICD
builds the IDG and detects cycles.

3.2.1 Background: Concurrency Control
This section describes Octet, a recently developed software-based
concurrency control mechanism [3] that ICD uses to help detect
cross-thread dependences. Octet establishes and identifies happens-
before relationships [21] that soundly but imprecisely imply all of
an execution’s cross-thread dependences.

At run time, Octet maintains a locality state for each object2

that can be one of the following: WrExT (write-exclusive for thread
T), RdExT (read-exclusive for thread T), or RdShc (read-shared; we
explain the counter c later). Table 1 shows the possible state transi-
tions based on an access and the object’s current state. To maintain
each object’s state at run time, the compiler inserts instrumentation
called a write barrier3 before every store:

if (obj . state != WrExT) { // fast path
/∗ slow path: change obj. state ∗/

}
obj . f = ... ; // program write

2 We use the term “object” to refer to any unit of shared memory.
3 A barrier is instrumentation added to every program load and store [38].



Trans. Old New Cross-thread
type state Access state dependence?

Same state
WrExT R or W by T Same

NoRdExT R by T Same
RdShc R by T ∗ Same

Upgrading RdExT W by T WrExT No
RdExT1 R by T2 RdShgRdShCnt Possibly

Fence RdShc R by T ∗ Same ∗ Possibly

Conflicting

WrExT1 W by T2 WrExT2

PossiblyWrExT1 R by T2 RdExT2
RdExT1 W by T2 WrExT2
RdShc W by T WrExT

Table 1. Octet state transitions. ∗A read to a RdShc object by
T triggers a fence transition if and only if per-thread counter
T.rdShCnt < c. The fence transition updates T.rdShCnt to c.

and a read barrier before every load:

if (obj . state != WrExT && obj.state != RdExT && // fast
!( obj . state == RdShc && T.rdShCnt >= c)) { // path

/∗ slow path: change obj. state ∗/
}
... = obj.f ; // program read

The state check, called the fast path, checks whether the state needs
to change (the Same state rows in Table 1). The key to Octet’s
performance is that the fast path is simple and performs no writes or
synchronization. If the state needs to change, the slow path executes
in order to change the state.
Conflicting transitions. The last four rows of Table 1 show con-
flicting state transitions, which indicate a conflicting access and re-
quire a coordination protocol to perform the state change. For ex-
ample, in Figure 2, before thread T2 can change an object o’s state
from WrExT1 to RdExT2, T2 must coordinate with T1 to ensure that
T1 does not continue accessing o racily without synchronization.
As part of this coordination protocol, T1 does not respond to T2’s
request until it reaches a safe point: a program point definitely not
between an Octet barrier and its corresponding program access.

The coordination protocol for conflicting transitions first puts
o into an intermediate state, which helps simplify the protocol by
ensuring that only one thread at a time tries to change an object’s
state. For example, if T2 wants to read an object that is in the
WrExT1 state, T2 first puts the object into the RdExIntT2 state. The
coordination protocol is then performed in one of two ways:

• The threads perform the explicit protocol if T1 is executing
code normally. T2 sends a request to T1, and T1 responds to
the request when it reaches a safe point. When T2 observes
the response, a roundtrip happens-before relationship has been
established, so T2 can change the state to RdExT2 and proceed.

• Otherwise, thread T1 is “blocking,” e.g., waiting for synchro-
nization or I/O. Rather than waiting for T1, T2 implicitly coor-
dinates with T1 by atomically setting a flag that T1 will observe
when it unblocks. This protocol establishes a happens-before
relationship, so T2 can change the state to RdExT2 and proceed.

Upgrading and fence transitions. Upgrading and fence transitions
(middle rows of Table 1) do not require coordination because other
threads can safely continue accessing the object under the old state.
In Figure 2, T3 atomically upgrades an object’s state from RdExT2
to RdShc. The value c is the new value of a global counter gRdShCnt
that gets incremented atomically every time an object transitions to
RdSh, establishing a global order of all transitions to RdSh. This
state change establishes a happens-before relationship from the
read on T2 to the current program point on T3, ensuring a transitive
happens-before relationship from T1’s write to T3’s read.

rd o.f
(RdExT2)

rd o.f
(RdShc)

rd p.q
(RdShc+1)

rd p.q
(fence)

rd o.f
(fence)

 rd o.f
(no fence)

tim
e

ConflictingUpgrading or fenceOrdered by gRdShCounter

T1 T2 T3 T6T4 T5

wr o.f
(WrExT1)

safe
point

Figure 2. A possible interleaving of six concurrent threads access-
ing shared objects o and p, and the corresponding Octet state tran-
sitions they trigger (with new states shown in parentheses).

In Figure 2, T4 reads o in the RdShc state. To ensure a happens-
before relationship from the last write to o (by T1) to this read in
T4, a fence transition is triggered. The fence transition is triggered
when a thread’s local counter T.rdShCnt is not up-to-date with
the counter c in RdShc. T4 updates T4.rdShCnt to c and issues a
memory fence to ensure a happens-before relationship from T3’s
transition to RdShc to T4’s read.

In Figure 2, T5 reads o but does not trigger a fence transition be-
cause T5 has already read an object (p) in the RdShc+1 state. How-
ever, a transitive happens-before relationship exists from T1’s write
to T5’s read of o because there is a happens-before relationship
from o’s state transition to RdShc in T3 to p’s transition to RdShc+1
in T6 (since both transitions update gRdShCnt atomically).

Octet’s state transitions thus establish happens-before edges that
transitively imply all cross-thread dependences [3]. ICD can pig-
gyback on Octet’s state transitions to identify potential cross-thread
dependences. Next, we address the challenge of actually identify-
ing the dependence edges that ICD should add to the IDG.

3.2.2 Identifying Cross-Thread Dependences
ICD uses Octet to help detect cross-thread dependences. While Oc-
tet establishes happens-before relationships that soundly imply all
cross-thread dependences, it does not precisely identify the exact
points in the execution with which happens-before relationships are
established. ICD addresses the challenge of how to identify these
program points and thus add cross-thread edges to the IDG that
soundly imply all cross-thread dependences, so that any true de-
pendence cycle will lead to a cycle in the IDG. In this way, ICD
detects atomicity violations soundly but imprecisely with substan-
tially lower overhead than a fully precise approach.

The challenge of identifying each cross-thread edge is in identi-
fying its source; the sink is obvious since it is the current execution
point on the thread triggering the state change. ICD keeps track of
a few “last transaction to do X” facts, to help identify sources of
cross-thread edges later:

T.lastRdEx – Per-thread variable that stores the last transaction of
thread T to transition an object into the RdExT state.

gLastRdSh – Global variable that stores the last transaction among
all threads to transition an object into a RdSh state.

We also define the following helper function:
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Figure 3. An example interleaving of threads executing atomic regions of code as transactions. The figure shows the Octet states after each
access and the IDG edges added by ICD.

procedure handleConflictingTransition(respT, reqT, oldState,
newState)

IDG.addEdge(currTX(respT)→ currTX(reqT))
if newState = RdExreqT then

reqT.lastRdEx := currTX(reqT)
end if

end procedure
procedure handleUpgradingTransition(T, oldState, newState)

Let rdExThread be the thread T such that oldState = RdExT
IDG.addEdge(rdExThread.lastRdEx→ currTX(T))
IDG.addEdge(gLastRdSh→ currTX(T))
gLastRdSh := currTX(T)

end procedure

procedure handleFenceTransition(T)
IDG.addEdge(gLastRdSh→ currTX(T))

end procedure

Figure 4. ICD procedures called from Octet state transitions.

currTX(T) – Returns the transaction currently executing on T.

Creating cross-thread edges for conflicting transitions. A con-
flicting transition involves one requesting thread reqT, which co-
ordinates with each responding thread respT. ICD piggybacks on
each invocation of the coordination protocol, using the procedure
handleConflictingTransition() in Figure 4, in order to add an edge to
the IDG.

Either reqT or respT will invoke the procedure as part of the co-
ordination protocol, depending on whether the explicit or implicit
protocol is used. For the explicit protocol, respT invokes the proce-
dure before it responds, which is safe since both threads are stopped
at that point. For the implicit protocol, reqT invokes the procedure
since respT is blocked; reqT first atomically places a “hold” on re-
spT so respT will not unblock while reqT invokes the procedure.

Figure 3 shows a possible thread interleaving among seven con-
current threads executing transactions. The edges among transac-
tions are IDG edges that ICD adds. The access rd o.g in Tx2j con-

flicts with the first write to object o in transaction Tx1i. The han-
dleConflictingTransition() procedure creates a cross-thread edge in
the IDG from Tx1i (the transaction executing the responding safe
point) to Tx2j (the transaction triggering the conflicting transition).

To help upgrading transitions (explained next), handleConflict-
ingTransition() updates the per-thread variable T.lastRdEx, the last
transaction to put an object into RdExT. In Figure 3, this procedure
updates T2.lastRdEx to Tx2j (not shown).
Creating cross-thread edges for upgrading transitions. To see
why ICD needs to add cross-thread edges for upgrading transitions
(and not just for conflicting transitions), consider the upgrading
transition from RdExT2 to RdShc+1 in Figure 3. Creating a cross-
thread edge is necessary to capture the dependence from T1’s write
to o to T3’s read of o transitively. To create this edge, T3 invokes
the procedure handleUpgradingTransition() in Figure 4.

This procedure also creates a second edge: from the last trans-
action to transfer an object to the RdSh state, referenced by gLast-
RdSh, to the current transaction. This edge orders all transitions to
RdSh state, and is needed in order to capture dependences related
to fence transitions, discussed next. For rd o.f in Tx3k, the proce-
dure creates an edge from gLastRdSh, which is Tx5m, to the current
transaction. Finally, the procedure updates gLastRdSh to point to
the current transaction, Tx3k.

ICD safely ignores RdExT→WrExT upgrading transitions. Any
new dependences created by this transition are already captured
transitively by existing intra-thread and cross-thread edges.
Creating cross-thread edges for fence transitions. ICD adds
edges to the IDG for fence transitions, in order to capture a pos-
sible write–read dependence for RdSh objects. Each fence transi-
tion calls handleFenceTransition() (Figure 4), which creates an edge
from the last transaction to transition an object to RdSh (gLastRdSh)
to the current transaction.

In Figure 3, T4’s read of o.h triggers a fence transition and a call
to handleFenceTransition(), which creates an edge from gLastRdSh
(Tx3k) to Tx4l. This edge helps capture the possible dependence
from T1’s write to T4’s read (in this case, no true dependence exists
since the accesses are to different fields).



After T4 reads o.h, it reads p.q, which does not trigger a fence
transition because T4 has already read an object (o) with a more
recent RdSh counter (c+1) than p’s RdSh counter (c). However, be-
cause RdEx → RdSh transitions create edges between all transac-
tions that transition an object to RdSh (e.g., the edge from Tx5m to
Tx3k), all write–read dependences are captured by IDG edges even
if they do not trigger a fence transition. In the figure, the IDG edges
added by the procedures transitively capture the dependence from
T7’s write to p.q to T4’s read of p.q.
Handling synchronization operations. Like Velodrome [14], Dou-
bleChecker captures dependences not only between reads and
writes to program variables, but also between synchronization op-
erations: lock release–acquire, notify–wait, and thread fork and
join. ICD handles these operations by treating acquire-like opera-
tions as reads and release-like operations as writes, on the object
being synchronized on.
Sources of imprecision. ICD is imprecise because the edges it
adds to the IDG are imprecise in several ways. First, ICD does not
maintain the last transaction to read and write each object, so it
identifies last accesses conservatively. For a conflicting transition,
ICD adds an edge from the responding thread’s last safe point. For
an upgrading transition from RdExT to RdSh, it adds an edge from
T’s last transition to RdExT, which may involve a different object.

ICD not only does not maintain the last reader transactions,
but it does not maintain even the last reader threads for a RdSh
object. ICD adds edges between all upgrading transitions to RdSh
(to help enable sound tracking of write–read dependences for RdSh
objects). For conflicting transitions from RdSh to WrExT, ICD adds
edges from all threads to T’s current transaction.

Finally, ICD tracks dependences at object granularity instead of
field granularity.

ICD’s imprecision is inherent in its use of Octet, which gives up
precise detection of dependences for better performance. Eliminat-
ing some but not all sources of ICD’s imprecision would be of little
use, since ICD would still be imprecise.

3.2.3 Cycle detection
Rather than triggering cycle detection each time it creates a cross-
thread edge (as Velodrome does [14]), ICD waits until a transaction
ends to detect cycles. Consider the following example.

T1 T2

wr o.f (WrExT1)

rd p.q (RdExT1)

wr p.q (WrExT2)

rd o.g (RdExT2)

rd o.f (RdExT2) fast path

slow path

slow path

Even if T1 and T2 each trigger cycle detection when they add cross-
thread edges, no precise cycle exists until rd o.f executes. In single-
run mode, to ensure that PCD sees the precise cycle, ICD should
report the cycle only after the transaction finishes. By invoking
cycle detection when transactions end, ICD is guaranteed to detect
each cycle at least once. In the first run of multi-run mode, deferring
cycle detection until transactions finish is not strictly necessary but
leads to fewer invocations of cycle detection.
Detecting strongly connected components. A side effect of de-
layed cycle detection is that a transaction might be involved in
multiple cycles. ICD therefore computes the maximal strongly con-
nected component (SCC) [7] starting from the transaction that just
ended, which identifies the set of all transactions that are part of
a cycle. The SCC computation explores a transaction tx only if tx

has finished. This rule is sound because if tx is indeed involved
in cycles, an SCC computation launched when tx finishes will de-
tect those cycles. Avoiding processing unfinished transactions helps
prevent identifying the same cycles multiple times, and it avoids
races with threads updating their current transaction’s state.

In Figure 3, ICD detects an SCC (in this case, a simple cycle)
of size four when transaction Tx1i ends. In single-run mode or the
second run of multi-run mode, ICD passes these transactions to
PCD for further processing. Note that PCD detects a precise cycle
involving Tx1i and Tx3k. In contrast, if Tx3k did not execute rd
o.f, ICD would still detect an imprecise cycle, but PCD would not
detect a precise cycle since none exists.

3.2.4 Maintaining Read/Write Logs
In single-run mode or the second run of multi-run mode, when
ICD detects a cycle, it passes the set of transactions involved in
the cycle to PCD. PCD also needs to know the exact accesses that
have executed as well as the cross-thread ordering between them.
To provide this information, ICD records read/write logs for every
transaction: the exact memory accesses (e.g., object fields) read and
written by the transaction. To accomplish this, ICD adds instrumen-
tation before each program access but after Octet’s instrumentation
that records the access in the current transaction’s read/write log.
Synchronization operations are recorded as reads or writes to the
objects being synchronized on. ICD provides cross-thread ordering
of accesses by recording, for each IDG edge, not only the source
and sink transactions of the edge, but also the exact read/write log
entries that correspond to the edge’s source and sink.

3.2.5 Soundness Argument
We now argue that ICD is a sound first-pass filter. In particular, we
show that for any actual (precise) cycle of dependences, there exists
an (imprecise) IDG cycle that is a superset of the precise cycle.

Let C be any set of executed nodes tx1, tx2, . . . , txn whose
(sound and precise) dependence edges form a (sound and precise)
cycle tx1 → tx2 → . . .→ txn → tx1.

Let txi → txj be any dependence edge in C. Since ICD adds
edges to the IDG that imply all dependences soundly, there must
exist a path of edges from txi to txj in the IDG.

Thus there exists a path tx1 → tx2 → . . . → txn → tx1 in the
IDG. ICD will detect this as a cycle C′ ⊇ C and pass C′ to PCD.
Since C′ contains all nodes in C, and PCD computes all depen-
dences between nodes in C′, PCD will compute the dependences
tx1 → tx2 → . . .→ txn → tx1, and it will thus detect the cycle C.

3.3 Precise Cycle Detection
Precise cycle detection (PCD) is a sound and precise analysis that
identifies cycles of dependences on a set of transactions provided as
input. DoubleChecker invokes PCD with the following input from
ICD: (1) a set of transactions identified by ICD as being involved
in an SCC, (2) the read/write logs of the transactions, and (3) the
cross-thread edges added by ICD recorded relative to read/write log
entries (to order conflicting accesses). PCD processes each SCC
identified by ICD separately. Using these inputs, PCD essentially
“replays” the subset of execution corresponding to the transactions
in the IDG cycle, and performs a sound and precise analysis similar
to Velodrome [14]. PCD uses the read/write ordering information to
replay accesses in an order that reflects the actual execution order.
As PCD simulates replaying execution from logs, it tracks the last
access(es) to each field:

• W(f) is the last transaction to write field f.
• R(T,f) is the last transaction of thread T to read field f.

PCD constructs a precise dependence graph (PDG) based on the
last-access information. A helper function thread(tx) returns the
thread that executes transaction tx. At each read or write of a



procedure READ(f, tx)
ifW(f) 6= null and thread(tx) 6= thread(W(f)) then

Add PDG edge:W(f)→ tx
end if
R(T,f) := tx . Update last read for T

end procedure

procedure WRITE(f, tx)
ifW(f) 6= null and thread(tx) 6= thread(W(f)) then

Add PDG edge:W(f)→ tx
end if
for all T, R(T,f) 6= null do

if thread(R(T,f)) 6= thread(tx) then
Add PDG edge:R(T,f)→ tx

end if
end for
W(f) := tx . Update last write
∀ T, R(T,f) := null . Clear all reads

end procedure

Figure 5. Rules to update last-access information for a read and
write of field f by a transaction tx.

field f, the analysis (1) adds a cross-thread edge to the PDG (if a
dependence exists) and (2) updates the last-access information of f,
as shown in Figure 5.
PCD detects cycles in the PDG after adding each cross-thread edge.
A detected cycle indicates a precise atomicity violation. As part of
the error log, PCD reports all the transactions and edges involved in
the precise PDG cycle. For example, in Figure 3, PCD processes an
IDG cycle of size four, computes the PDG, and identifies a precise
cycle with just two transactions, Tx1i and Tx3k.

PCD aids debugging by performing blame assignment [14],
which “blames” a transaction for an atomicity violation if its out-
going edge is created earlier than its incoming edge, implying that
the transaction completes a cycle. In Figure 3, PCD blames Tx1i.

4. Implementation
We have implemented a prototype of DoubleChecker in Jikes RVM
3.1.3 [1], a high-performance Java virtual machine (JVM) that pro-
vides performance competitive with commercial JVMs.4 Our im-
plementation builds on the publicly available Octet implementa-
tion [3]. For comparison purposes, we have also implemented Velo-
drome in Jikes RVM. Flanagan et al.’s implementation [14] is not
available, and in any case it is implemented on top of the JVM-
independent RoadRunner framework [12], so its performance char-
acteristics could differ significantly. We have made our implemen-
tations of DoubleChecker and Velodrome publicly available on the
Jikes RVM Research Archive.5

Specifying atomic regions. DoubleChecker takes an atomicity
specification as input, specified as a list of methods to be excluded
from the specification; all other methods are part of the specifica-
tion, i.e., they are expected to execute atomically. DoubleChecker
extends Jikes RVM’s dynamic compilers so each compiled method
is statically either transactional or non-transactional. Methods
specified as atomic are always transactional, and non-atomic meth-
ods are compiled as transactional or non-transactional depending
on the caller’s context. The compilers compile two versions of
non-atomic methods called from both contexts.
Constructing the IDG. The compilers insert instrumentation to
start and end transactions in each atomic method called from a

4 http://dacapo.anu.edu.au/regression/perf/9.12-bach.html
5 http://www.jikesrvm.org/Research+Archive

non-transactional context. At method start, instrumentation creates
a new regular transaction. At method end, it creates a new unary
transaction. While each non-transactional access conceptually exe-
cutes in its own unary transaction, our implementation reuses prior
work’s optimization [14], which merges consecutive unary transac-
tions not interrupted by an incoming or outgoing cross-thread edge.

Each transaction maintains (1) a list of its outgoing edges to
other transactions and (2) (for single-run mode or the second run of
multi-run mode) a read/write log that is an ordered list of precise
memory access entries. Each read/write log entry records informa-
tion about one access: the base object reference, field address, and
read versus write. The read/write log has special entries that cor-
respond to incoming and outgoing cross-thread edges, since PCD
needs to know the access order with respect to cross-thread edges.

Transactions and their read/write logs are regular Java objects in
our implementation, so garbage collection (GC) naturally collects
them as they become transitively unreachable from each thread’s
current transaction reference. The implementation treats read/write
log entries as weak references to avoid memory leaks. When a
reference in a read/write log entry dies, our modified GC replaces
the reference in the log with the old field address and the current
GC invocation count, distinguishing the field precisely.
Instrumenting program accesses. The compilers add read and
write barriers at (object and static) field and array accesses. Our
experiments focus on evaluating only instrumenting field accesses
and only in application (not Java library) methods, which imitates
closely related prior work [11, 14], although we also evaluate the
performance of instrumenting array accesses. The compilers instru-
ment program synchronization by treating acquire operations like
object reads, and release operations like object writes.

In single-run mode or the second run of multi-run mode, ICD
adds instrumentation to record read/write logs. Although logs are
ordered, duplicate entries with no incoming or outgoing edges be-
tween them can be elided to save space. To elide duplicate entries
on the fly, ICD tracks, for each field, the value of a per-thread time-
stamp of the last access (and whether it was a read or write) to the
object; RdSh objects have up to one timestamp per thread. Every
time a new transaction starts, or a transaction has an incoming or
outgoing edge, a thread increments its current timestamp. It stores
this information in per-field metadata for WrEx and RdEx objects
and per-thread hash tables for RdSh objects.
Velodrome implementation. Our DoubleChecker and Velodrome
implementations share features as much as possible: they instru-
ment the same accesses, demarcate transactions the same way, and
represent dependence graphs the same way. The Velodrome im-
plementation does not use Octet. It adds two words for each object
and static field: one references the transaction to write the field, and
the other references the last transaction(s) (up to one per thread) to
read the field since the last write. To capture release–acquire de-
pendences, each object has an extra header word to track the last
transaction to release the object’s lock. The implementation treats
metadata references as weak references to avoid memory leaks in
the transaction dependence graph.

At each access, instrumentation detects cross-thread depen-
dences, adds them to the dependence graph, detects cycles (and
reports a precise atomicity violation for each cycle), and updates
the field’s last-access information. To provide atomicity of the
instrumentation together with the program access and thus track
cross-thread dependences accurately, the instrumentation and ac-
cess execute in a small critical section that “locks” a word of the
field’s metadata using an atomic operation.
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Figure 6. Iterative refinement methodology to generate a pro-
gram’s atomicity specification.

5. Evaluation
This section evaluates the correctness and performance of our pro-
totype implementation of DoubleChecker in both single- and multi-
run modes and compares with Velodrome.

5.1 Methodology
Benchmarks. Our experiments run the following programs: the
multithreaded DaCapo benchmarks [2] that Jikes RVM 3.1.3 can
execute successfully: eclipse6, hsqldb6, lusearch6, xalan6, avrora9,
jython9, luindex9, lusearch9,6 pmd9, sunflow9, and xalan9 (suffixes
‘6’ and ‘9’ distinguish benchmarks from versions 2006-10-MR2
and 9.12-bach, respectively). We also execute the following pro-
grams used in prior work [11, 14]: the microbenchmarks elevator,
hedc, philo, sor, and tsp [34]; and moldyn, montecarlo, and raytracer
from the Java Grande benchmark suite [30].
Experimental setup. We build a high-performance configuration
of the JVM (FastAdaptive) that adaptively optimizes the application
and uses a high-performance, generational, stop-the-world garbage
collector. We let the JVM adjust the heap size automatically. Our
experiments use the small workload size of the DaCapo bench-
marks, since otherwise DoubleChecker’s single-run mode and (to a
lesser extent) Velodrome run out of memory with larger workload
sizes for a few benchmarks. DoubleChecker’s single-run mode also
runs out of memory with the standard small size of moldyn and ray-
tracer, so we modify the benchmarks to use an even smaller input,
which all atomicity checkers execute. The JVM, which targets the
IA-32 platform, is limited to a heap of roughly 1.5–2 GB; a 64-bit
implementation could avoid these out-of-memory errors. For the
other benchmarks, we use the same input configurations described
in prior work [11, 14].

For DoubleChecker’s multi-run mode, we execute 10 trials of
the first run, take the union of the transactions reported as part of
ICD cycles, and use it as input for the second run. This methodo-
logy represents a point in the accuracy–performance tradeoff that
we anticipate would be used in practice: combining information
from multiple first runs should help a second run find more atom-
icity violations but also increase its overhead.
Platform. The experiments execute on a workstation with a 3.30
GHz 4-core Intel i5 processor, with 4 GB memory running 64-bit
RedHat Enterprise Linux 6.5, kernel 2.6.32.
Deriving atomicity specifications. Atomicity specifications for the
benchmarks either have not been determined by prior work (Da-
Capo) or are not publicly available (non-DaCapo). We derive spec-
ifications for all the programs using an iterative refinement method-
ology used successfully by prior work [11, 13, 14, 35]. Figure 6
illustrates iterative refinement. First, all methods are assumed to be
atomic with a few exceptions: top-level methods (e.g., main() and
Thread.run()) and methods that contain interrupting calls (e.g., to
wait() or notify()). We also exclude the DaCapo benchmarks’ driver
thread (which launches worker threads that actually run the bench-
mark program) from the atomicity specification, since we know it
executes non-atomically. Iterative refinement repeatedly removes
methods from the specification when they are “blamed” for de-
tected atomicity violations. We terminate iterative refinement only
when no new atomicity violations are reported after 10 trials, in

6 We use a version of lusearch9 that fixes a serious memory leak [39].

Velodrome DoubleChecker
Total (Unique) Single-run Multi-run (Unique)

eclipse6 230 (8) 244 190 (8)
hsqldb6 10 (0) 57 57 (0)
lusearch6 1 (0) 1 1 (0)
xalan6 57 (0) 69 54 (0)
avrora9 23 (0) 25 18 (0)
jython9 0 (0) 0 0 (0)
luindex9 0 (0) 0 0 (0)
lusearch9 41 (1) 40 38 (0)
pmd9 0 (0) 0 0 (0)
sunflow9 13 (1) 13 13 (0)
xalan9 78 (0) 82 69 (0)
elevator 2 (0) 2 2 (0)
hedc 3 (1) 3 2 (0)
philo 0 (0) 0 0 (0)
sor 0 (0) 0 0 (0)
tsp 7 (0) 7 7 (0)
moldyn 0 (0) 0 0 (0)
montecarlo 2 (0) 2 2 (0)
raytracer 0 (0) 0 0 (0)
Total 467 (11) 545 453 (8)

Table 2. Static atomicity violations reported by our implementa-
tions of Velodrome and DoubleChecker. For Velodrome and multi-
run mode, Unique counts how many violations were not reported
by single-run mode.

order to approximate well-tested software, which has an accurate
atomicity specification and few, if any, known atomicity violations.

We use iterative refinement in two ways. First, we use it to
evaluate the soundness of DoubleChecker’s single- and multi-
run modes by comparing the set of atomicity violations reported
by Velodrome and DoubleChecker’s single- and multi-run modes
(Section 5.2). For each of the three configurations, we perform it-
erative refinement to completion and collect all methods blamed as
non-atomic along the way.

Second, we use iterative refinement to determine the final spec-
ifications, i.e., specifications that lead to few or no atomicity vio-
lations, in order to evaluate performance (Section 5.3). To prepare
the final specification for each program, we take the intersection of
the finalized specifications (no more violations reported in 10 trials)
for both Velodrome and DoubleChecker (single-run mode, since it
is fully sound by design), to avoid any bias toward one approach.

We adjust the specifications in a few cases because of out-of-
memory errors. raytracer and sunflow9 have one and two long-
running transactions, respectively, that execute atomically and that
ICD passes to PCD, causing PCD to run out of memory, so we ex-
clude the corresponding methods from the specifications. On the
flip side, refining the specification of xalan6 leads to so many trans-
actions being created that DoubleChecker run out of memory, so
we use an intermediate (not fully refined) specification for xalan6.

5.2 Soundness
DoubleChecker’s single-run mode is sound and precise by design.
By comparing it to Velodrome, we sanity-check our implemen-
tations while also observing the effect of timing differences be-
tween the two algorithms. Multi-run mode is not fully sound, so
by comparing it to Velodrome and single-run mode, we evaluate
how sound it is in practice. A caveat of this section’s comparison
is that the first and second runs use the same program inputs, thus
representing an upper bound on soundness guarantees.

Table 2 shows, for each atomicity checker, the total number of
violations reported during all steps of iterative refinement. Each
violation in Table 2 represents a method identified by blame as-
signment at least once during this process. At a given step of it-
erative refinement, a violation reported in one trial may not al-
ways be reported in other trials, due to nondeterministic thread
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Figure 7. Run-time performance comparisons of Velodrome, DoubleChecker’s single-run mode, and the first and second runs of Double-
Checker’s multi-run mode. The sub-bars show GC time. The geomean GC time excludes short-running sor, which never triggers GC.

interleavings. Overall, the violations reported by Velodrome and
DoubleChecker’s single-run mode match closely. Both implemen-
tations are sound and precise, so (assuming correct implementa-
tions) differences are due to different thread interleavings caused
by run-to-run nondeterminism and timing differences between the
two analyses. The Unique value in parentheses counts violations
reported by Velodrome but not by single-run mode; it is nonzero
for just four programs, indicating single-run mode finds nearly all
violations found by Velodrome. Single-run also mode finds several
violations not found by Velodrome. We investigated the program
with the greatest discrepancy, hsqldb6. By inserting random tim-
ing delays in Velodrome, we were able to reproduce six violations
reported by DoubleChecker, providing some evidence that differ-
ences are due to timing effects.

Not surprisingly, multi-run mode does not detect quite as many
violations as the sound single-run mode. Overall, multi-run modes
detects 83% of all violations detected by single-run mode. Normal-
izing the detection rate across programs with at least one violation,
multi-run mode detects 90% of a program’s violations on average,
which may be worthwhile in exchange for multi-run mode’s lower
run-time overhead (discussed next). Multi-run mode finds viola-
tions not found by single-run mode only for eclipse6; some but not
all of these are the same violations found by Velodrome but not
single-run mode.

5.3 Performance
This section compares the performance of Velodrome, Double-
Checker’s single-run mode, and the first and second runs of Dou-
bleChecker’s multi-run mode. We use the final specifications for
our performance experiments (Section 5.1), and exclude elevator,
hedc, and philo, since they are not compute bound [14].

Figure 7 shows the execution time of Jikes RVM running var-
ious configurations of the Velodrome and DoubleChecker imple-
mentations. Execution times are normalized to the first configura-
tion, Unmodified Jikes RVM. Each bar is the median of 25 trials to
minimize effects of any machine noise. We also show the mean as
the center of 95% confidence intervals. Sub-bars show the fraction
of time taken by GC.
Velodrome. Our implementation of Velodrome slows programs by
6.1X on average. This result corresponds with the 12.7X slowdown
reported in prior work [14], although it is hard to compare results
since we implement Velodrome in a JVM and use an overlapping

but different set of benchmarks. Comparing results for the bench-
marks evaluated by prior work, we find that our implementation
adds substantially more overhead in several cases. In particular, the
Velodrome paper reports 71.7X, 4.5X, and 9.2X slowdowns for tsp,
moldyn, and raytracer, respectively [14]. It is somewhat surprising
that our implementation in a JVM would add more overhead than
the dynamic bytecode instrumentation approach by the Velodrome
authors [12, 14]. By running various partial configurations, we find
that 82% of this overhead comes from synchronization required
to provide analysis–access atomicity, which is unsurprising since
atomic operations can lead to remote cache misses on otherwise
mostly-read-shared accesses.

According to the Velodrome authors [16], their implementation
eschews synchronization when metadata does not actually need to
change, i.e., the current transaction is already the last writer or
reader. We have implemented and evaluated this variant, which is
unsound and can miss dependences in the presence of concurrent
accesses, and in fact it crashes on avrora9 due to races accessing
metadata. This unsound variant slows programs by 4.1X on aver-
age, providing the most help to the programs afflicted most. Dou-
bleChecker still outperforms this unsound variant of Velodrome.
DoubleChecker’s single-run mode. The remaining configurations
in Figure 7 are for DoubleChecker. Single-run (ICD+PCD) shows
the time incurred to run ICD and PCD in the same execution.
This configuration slows programs by 3.6X (260% overhead) on
average. Using partial configurations, we find that about two-fifths
of this overhead comes from Octet, building the IDG, and detecting
IDG cycles. (This partial configuration is similar to the first run of
multi-run mode, presented next.) Logging read and write accesses
as part of ICD accounts for nearly all of the remaining overhead.
Less than one-tenth of the overhead on average comes from PCD,
since ICD filters out most transactions. Single-run mode spends a
high fraction of time in GC for several programs, largely because
of the memory footprint of long-lived read/write logs. Overall,
DoubleChecker’s single-run mode avoids much of Velodrome’s
costs and adds 1.9 times less overhead than Velodrome.

Velodrome outperforms DoubleChecker’s single-run mode for
one program, xalan6. When executing xalan6, ICD detects many
imprecise dependences, triggering SCC detection frequently, and
SCC detection finds many imprecise SCCs, leading to high PCD
overhead. ICD detects SCCs serially, and PCD detects cycles seri-
ally; making them parallel could alleviate this bottleneck.



Single-run mode (or first run of multi-run mode) Second run of multi-run mode
# Instrumented # Instrumented

Name Regular Regular Non-trans. # IDG # ICD Regular Regular Non-trans. # IDG # ICD
transactions accesses accesses edges SCCs transactions accesses accesses edges SCCs

eclipse6 793,000 137,000,000 6,610,000 68,400 124 617,000 46,400,000 7,100,000 38,900 80
hsqldb6 87,000 13,400,000 147,000 26,400 76 86,400 10,100,000 148,000 26,200 75
lusearch6 95,700 143,000,000 1,440,000 17 0 0 0 0 0 0
xalan6 1,140,000 70,400,000 17,500,000 211,000 15,500 1,170,000 70,900,000 16,900,000 211,000 15,700
avrora9 22,100,000 264,000,000 362,000,000 2,310,000 854 9,260,000 122,000,000 363,000,000 2,340,000 932
jython9 8 53,200,000 29 0 0 0 0 0 0 0
luindex9 7 8,610,000 25 0 0 0 0 0 0 0
lusearch9 813,000 115,000,000 27,100,000 141 6 64,900 13,500,000 0 142 8
pmd9 7 2,650,000 25 0 0 0 0 0 0 0
sunflow9 35,000 263,000,000 129,000 1,080 25 10,600 176,000,000 129,000 1,020 24
xalan9 1,580,000 67,000,000 14,500,000 66,500 444 1,480,000 66,500,000 15,100,000 67,000 457
elevator 3,200 17,000 5,590 419 24 3,180 16,100 5,590 427 23
hedc 79 38,400 114 83 3 25 37,200 114 85 3
philo 6 16 458 144 0 0 0 0 0 0
sor 2 16 18,700 189 0 0 0 0 0 0
tsp 12,000 386,000 694,000,000 14,100 0 1,340 6,650 691,000,000 11,500 0
moldyn 573,000 194,000,000 50,500,000 38 0 0 0 0 0 0
montecarlo 102,000 179,000,000 93,300,000 30,600 2,860 89,700 145,000,000 108,000,000 30,800 2,730
raytracer 25,700 890,000,000 108,000,000 215 1 4 113 0 9 1

Table 3. Run-time characteristics of DoubleChecker for the single-run and the second run in the multi-run mode. Each average is rounded
to a whole number with at most three significant digits.

DoubleChecker’s multi-run mode. First run (ICD w/o logging)
executes only ICD, without logging accesses. Its functionality is
similar to a subset of single-run mode evaluated above, and its over-
head is unsurprising: it slows programs by 1.9X (90% overhead) on
average. The first run of multi-run mode is significantly faster than
single-run mode because the former avoids logging.

Second run (ICD+PCD) executes both ICD and PCD (similar to
single-run mode), except it only instruments transactions statically
identified by the first run, and it instruments non-transactional ac-
cesses if and only if the first run identified any non-transactional ac-
cesses involved in cycles. The second run slows programs by 2.4X
(140% overhead) on average.

We also evaluate a configuration of the second run that always
instruments non-transactional accesses—regardless of whether the
first run detected any cycles involving unary transactions. Overhead
increases to 169%, justifying conditional instrumentation of non-
transactional accesses during the second run.

Since the first run detects few imprecise cycles, one might ex-
pect the second run would have little work to do. However, the first
run identifies transactions statically by method signature, leading
to many more (dynamic) instrumented accesses in the second run
than the total number of (dynamic) accesses identified as involved
in cycles in the first run. The filter for non-transactional accesses is
even coarser; the second run must instrument all non-transactional
accesses in many cases. For this reason, DoubleChecker’s ICD and
PCD analyses perform better than using Velodrome for the second
run, i.e., ICD is still effective as a dynamic transaction filter in the
second run. Using Velodrome for the second run (i.e., instrument-
ing only the transactions statically identified by the first run) slows
programs by 2.9X.

A promising direction for future work is to devise an effective
way for the first run to more precisely communicate potentially
imprecise cycles to the second run.
Summary. Overall, DoubleChecker substantially outperforms prior
art. The single-run mode is a fully sound and precise atomicity
checker that adds 1.9 times less overhead than Velodrome. Multi-
run mode does not guarantee soundness, since atomicity checking
is split between two runs, but it avoids the need for logging all
program accesses (which the single-run mode needs in order to

perform a precise analysis). The first and second runs of the multi-
run mode add 5.6 and 3.7 times less overhead than Velodrome, re-
spectively, providing a performance–accuracy tradeoff that is likely
worthwhile in practice for providing more acceptable overhead for
checking atomicity. DoubleChecker’s significant performance ben-
efits justify our design’s key insights: it is indeed cheaper to track
cross-thread dependences imprecisely in order to filter most of a
program’s execution from processing by a precise analysis.

5.4 Other Performance Investigations
The performance results so far use refined atomicity specifications
that lead to no reported atomicity violations. Here we measure
the performance of DoubleChecker during iterative refinement. At
the beginning of iterative refinement (i.e., the strictest specifica-
tion), DoubleChecker’s single-run mode slows execution by 3.4X.
Halfway through iterative refinement (after the first half of the non-
atomic methods have been removed from the specification), single-
run mode’s slowdown is 3.6X. These slowdowns compare closely
with the slowdown after full refinement (3.6X), suggesting that per-
formance during iterative refinement is similarly reasonable.

The experiments so far evaluate implementations of Double-
Checker and Velodrome that do not instrument array accesses, since
the Velodrome paper also omits this instrumentation [14]. Here we
evaluate the additional overhead from array instrumentation. For
implementation simplicity, DoubleChecker and Velodrome con-
flate all elements of an array by using array-level metadata instead
of element-level metadata. This makes not only ICD but also Velo-
drome imprecise, so we disable cycle detection for both analyses.
DoubleChecker’s single-run mode then runs out of memory for
xalan6 and xalan9, so we exclude these programs. DoubleChecker’s
single-run mode’s average slowdown increases from 3.1X (without
array instrumentation) to 3.7X (with array instrumentation), and
Velodrome’s slowdown increases from 6.3X to 7.3X. Note that all
four slowdowns skip cycle detection and exclude xalan6 and xalan9.

Finally, to check whether ICD is beneficial as a first-pass filter,
we use a “PCD-only” variant of single-run mode in which PCD
processes every executed transaction, not just transactions identi-
fied by ICD’s imprecise cycle detection. The PCD-only variant—
which is something of a straw man since PCD essentially imple-
ments a less-efficient version of Velodrome’s algorithm—increases



the slowdown of the single-run mode from 3.1X to 16.6X on aver-
age (both results exclude eclipse6, xalan6, avrora9, and xalan9, since
the PCD-only variant runs out of memory when running them).
This result confirms that ICD is essential as a first-pass filter for
PCD.

5.5 Run-Time Characteristics
Table 3 shows execution characteristics of ICD in single-run mode
(the first run of multi-run mode should yield similar results) and the
second run of multi-run mode. Each value is the mean of 10 trials of
a special statistics-gathering configuration of DoubleChecker; oth-
erwise methodology is the same as Figure 7. For each of the two
configurations, the table reports the number of regular (non-unary)
transactions and accesses instrumented in both regular and unary
transactions, and the number of cross-thread edges and SCCs in
the IDG. Single-run mode instruments everything, while the sec-
ond run instruments a subset of transactions. For several programs,
the second run avoids instrumenting any accesses because the first
run reports no SCCs. For lusearch9 and raytracer, the second run
avoids instrumenting any non-transactional accesses since no first-
run SCC contained a unary transaction, but non-transactional ac-
cesses are instrumented for all the other benchmarks. For programs
where the second run instruments (nearly) all transactions and ac-
cesses (e.g., xalan6 and avrora9), there is little benefit from multi-
run mode’s optimization. Even when they should be the same, the
counts sometimes differ across modes due to run-to-run nondeter-
minism.

Compared to how many memory accesses execute, there are few
ICD edges, justifying ICD’s approach that optimistically assumes
accesses are not involved in cross-thread dependences. There are
few ICD SCCs in most cases, justifying DoubleChecker’s dual-
analysis approach and explaining why PCD adds low overhead
(except for xalan6; Section 5.3).

6. Related Work
This section details other static and dynamic analyses besides the
most closely related work, Velodrome [14] (Section 2).
Checking conflict serializability. Farzan and Parthasarathy intro-
duce a dynamic serializability-checking analysis based on finding
cycles among transactions [9]. Their analysis bounds space over-
head optimally so space is not proportional to the length of the
run, by summarizing the dependence graph as transactions finish.
DoubleChecker and Velodrome do not summarize the dependence
graph, but they do rely on garbage collection (GC) to collect trans-
actions not transitively reachable from any thread’s current trans-
action (“last access” references from objects are treated as weak
references), which reduces space overhead in practice. Still, Dou-
bleChecker can add substantial space overhead, especially to main-
tain single-run mode’s read/write logs. Future work might be able
to apply summarization to DoubleChecker to reduce space over-
head.

While Velodrome and DoubleChecker detect cycles online as
the program executes, Farzan and Parthasarathy’s analysis detects
cycles offline, i.e., after the execution finishes. They compare their
summarized dependence graph to an unsummarized dependence
graph—but this unsummarized graph does not use GC, so its space
overhead is unavoidably proportional to the length of the run.

Farzan and Parthasarathy’s analysis does not track synchroniza-
tion edges [9]. In contrast, DoubleChecker, which follows Velo-
drome [14], tracks synchronization edges—but tracking synchro-
nization edges can lead to false positives when checking conflict
serializability.
Other dynamic analyses. Some dynamic approaches are predic-
tive, so they detect atomicity violations not only for the current ex-
ecution’s thread interleavings, but also for other interleavings that

could have executed [29, 31]. Predictive analyses tend to be con-
siderably more expensive than non-predictive analysis, particularly
the more sound and/or precise they are.

Wang and Stoller propose dynamic analyses for checking atom-
icity based on detecting unserializable patterns [35, 36]. These ap-
proaches are predictive since they aim to find potential violations
in other executions, but this process is inherently imprecise, so they
may report false positives.

Atomizer is a dynamic atomicity checker that uses a variation
of the lockset algorithm [28] to determine shared variables that
can have racy accesses, and monitors those variables for potential
atomicity violations. Atomizer reports false positives since it relies
on the locket algorithm.
Static analyses. Static approaches can check all inputs soundly, but
they are imprecise, and in practice they do not scale well to large
programs nor to dynamic language features such as dynamic class
loading. Type systems can help check atomicity but require a com-
bination of type inference and programmer annotations [13, 15].
Model checking does not scale well to large programs because of
state space explosion [8, 10, 19]. Static approaches are well suited
to analyzing critical sections but not wait–notify synchronization.
Alternatives. HAVE combines static and dynamic analysis to ob-
tain benefits of both approaches [4]. Because HAVE speculates
about untaken branches, it can report false positives.

Several approaches infer an atomicity specification automati-
cally [6, 18, 24, 32, 37]. However, these approaches are inherently
unsound and imprecise. Furthermore, many of these approaches
add high overhead to track cross-thread dependences, e.g., AVIO
slows programs by more than an order of magnitude [24].

Prior work exposes atomicity violations by making them more
likely to occur [26, 27] and thus more likely for a non-predictive
analysis to detect. Exposing atomicity violations is complementary
to checking atomicity.

Transactional memory enforces programmer-specified atomic-
ity annotations by speculatively executing atomic regions as trans-
actions, which are rolled back if a region conflict occurs [20].
Atom-Aid relies on custom hardware to execute regions atomically
and to detect some atomicity violations [25].

Static analysis can infer needed locks automatically from an
atomicity specification (e.g., [5]). The inferred locks are inherently
imprecise, leading to overly conservative locking.

In summary, most prior work gives up on soundness or precision
or both, and dynamic approaches slow programs substantially. In
contrast, DoubleChecker checks conflict serializability soundly and
precisely and significantly outperforms other dynamic approaches.

7. Conclusion
This paper presents a new direction for dynamic sound and precise
atomicity checking that divides work into two cooperating analy-
ses: a lightweight analysis that detects cross-thread dependences,
and thus atomicity violations, soundly but imprecisely; and a pre-
cise analysis that focuses on potential cycles and rules out false
positives. These cooperating analyses can execute in a single run, or
the imprecise analysis can run alone and inform a second run, pro-
viding a performance–soundness tradeoff. DoubleChecker outper-
forms existing sound and precise atomicity checking, suggesting
that its new direction has the potential to enable more widespread
use of atomicity checking in the real world.
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