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It is notoriously challenging to develop parallel software systems that are both scalable and correct. Runtime

support for parallelism—such as multithreaded record and replay, data race detectors, transactional memory,

and enforcement of stronger memory models—helps achieve these goals, but existing commodity solutions

slow programs substantially to track (i.e., detect or control) an execution’s cross-thread dependencies accu-

rately. Prior work tracks cross-thread dependencies either “pessimistically,” slowing every program access, or

“optimistically,” allowing for lightweight instrumentation of most accesses but dramatically slowing accesses

that are conflicting (i.e., involved in cross-thread dependencies).

This article presents two novel approaches that seek to improve the performance of dependence tracking.

Hybrid tracking (HT) hybridizes pessimistic and optimistic tracking by overcoming a fundamental mismatch

between these two kinds of tracking. HT uses an adaptive, profile-based policy to make runtime decisions

about switching between pessimistic and optimistic tracking. Relaxed tracking (RT) attempts to reduce op-

timistic tracking’s overhead on conflicting accesses by tracking dependencies in a “relaxed” way—meaning

that not all dependencies are tracked accurately—while still preserving both program semantics and runtime

support’s correctness. To demonstrate the usefulness and potential of HT and RT, we build runtime support

based on the two approaches. Our evaluation shows that both approaches offer performance advantages over

existing approaches, but there exist challenges and opportunities for further improvement.

HT and RT are distinct solutions to the same problem. It is easier to build runtime support based on HT than

on RT, although RT does not incur the overhead of online profiling. This article presents the two approaches

together to inform and inspire future designs for efficient parallel runtime support.
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1 INTRODUCTION

Parallel programs are becoming increasingly popular to make software scale with successive mi-
croprocessor generations that provide more, instead of faster, cores. However, it is notoriously dif-
ficult to achieve both correctness and scalability. In shared-memory parallel programs, locks offer
an easy-to-understand concurrency control mechanism, but their use often leads to concurrency
bugs and scalability bottlenecks.

Researchers have developed dynamic program analyses and software systems that help support
reliable, scalable shared-memory parallelism. This article uses the general term “runtime support”
to refer to such analyses and systems, which check or enforce concurrency correctness proper-
ties such as atomicity, determinism, and data race freedom. Notable examples of runtime sup-
port include data race detectors (e.g., Flanagan and Freund (2009)), software transactional mem-
ory (e.g., Harris and Fraser (2003)), enforcement of strong memory models (e.g., Ouyang et al.
(2013)), atomicity checkers (e.g., Flanagan et al. (2008)), and multithreaded record and replay (e.g.,
Veeraraghavan et al. (2011)). However, existing instances of runtime support are impractical, be-
cause they slow programs substantially, rely on custom hardware, or have other serious limitations.

Existing runtime support for commodity systems (often called software-only) adds expensive
instrumentation at each program access to track (detect or control) cross-thread dependencies

(data dependencies involving two threads). This instrumentation is particularly costly, because
it must add its own synchronization to ensure soundness in the presence of data races in the
program execution. Most existing runtime support uses an atomic operation at every access (e.g.,
Flanagan and Freund (2009), LeBlanc and Mellor-Crummey (1987), Lee et al. (2012), Harris
and Fraser (2003), and Flanagan et al. (2008)), which we refer to as pessimistic tracking of
dependencies. The performance of runtime support built on pessimistic tracking is relatively
insensitive to the number of cross-thread dependencies in an execution. However, its frequent
synchronization typically slows executions by several times or more. Alternatively, optimistic

tracking avoids synchronization for accesses not involved in cross-thread dependencies but incurs
significant latency at conflicting accesses to perform coordination between threads (Russell
and Detlefs 2006; Kawachiya et al. 2002; Burrows 2004; Scales et al. 1996; von Praun and Gross
2001; Bond et al. 2013). We emphasize that although optimistic tracking performs well for the
many programs that perform relatively few conflicting accesses, its very high cost for some
programs is a severe impediment to its widespread use to build high-performance runtime
support.

This article proposes two novel, distinct approaches that aim to overcome the limitations of
both pessimistic and optimistic tracking. The first approach, called hybrid tracking (HT), combines
pessimistic and optimistic tracking to benefit from both. HT addresses a fundamental mismatch
between pessimistic and optimistic tracking, introducing a novel approach that defers unlocking
of pessimistic states, based on insights about the interplay between dependence tracking and pro-
gram synchronization. HT consists of two components: a hybrid state model that supports shared
variables being in—and transferring between—pessimistic and optimistic states (i.e., handled by
pessimistic and optimistic tracking, respectively) and an adaptive policy that makes profile-guided
decisions about when to apply pessimistic versus optimistic tracking.
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The second approach, called relaxed tracking (RT), seeks to hide the latency of optimistic track-
ing’s coordination at conflicting accesses. To do so, RT relaxes the requirement that runtime sup-
port must track all dependencies accurately—while preserving the runtime support’s guarantees
and adhering to the language’s semantics. RT enables a thread to continue executing past a mem-
ory access involved in a cross-thread dependence, without accurately tracking the dependence.
RT’s design consists of two components: a relaxed coordination protocol and support for relaxed

loads and stores.
We extend existing runtime support to use HT and RT to demonstrate their usefulness. We build

two dependence recorders based on HT and RT, respectively. In addition, we build runtime support
for enforcement of region serializability based on HT, and a software transactional memory (STM)
system based on RT. We note that although the two techniques are potentially complementary,
we have not combined them or evaluated them together, due to the complexity and challenges of
doing so.

We have implemented HT, RT, and the hybrid and relaxed runtime support in a Java virtual
machine that performs competitively with commerical JVMs (Biswas et al. 2015). Our evaluation
shows that although both HT and RT’s average performance improvement over optimistic tracking
is modest, they (1) outperform pessimistic tracking consistently, (2) outperform optimistic tracking
for several high-conflict programs, and (3) perform about the same as optimistic tracking for low-
conflict programs.

Compared with RT, using HT requires fewer modifications to runtime support. On the other
hand, HT’s adaptive policy relies on online profiling and incurs slightly higher overhead than RT
for low-conflict programs. Much of HT’s performance benefit directly translates into speedup of
hybrid runtime support. In contrast, RT’s potential for improving performance is often limited by
correctness contraints and by RT’s indirect effects on dependence tracking behavior.

Overall, these results demonstrate the potential for using novel mechanisms to address a key
performance bottleneck of parallel runtime support, suggesting new directions for efficient, flexi-
ble, software-only runtime support that targets a variety of parallel software systems.

2 BACKGROUND AND MOTIVATION

Runtime support that checks or enforces concurrency correctness properties must track cross-
thread dependencies, which are data dependencies (write–read, write–write, and read–write de-
pendencies) involving two threads. In this article, tracking dependencies means doing one of the
following soundly (i.e., without missing dependencies):

—Detect (monitor) dependencies. Examples: data race detectors, atomicity violation detectors,
and dependence recorders (e.g., for record and replay).

—Control (enforce) dependencies. Examples: transactional memory, enforcing memory mod-
els, and deterministic execution.

For data-race-free (DRF) programs, runtime support can track cross-thread dependencies soundly
by instrumenting only program synchronization operations, because shared-memory languages
such as Java and C++ guarantee serializability of synchronization-free regions for DRF programs
(Boehm and Adve 2008; Manson et al. 2005; Adve and Hill 1990; Adve and Boehm 2010). However,
programs routinely have data races, which are hard to detect or eliminate (e.g., Flanagan and
Freund (2009), von Praun and Gross (2003), Lee et al. (2012), and Boyapati et al. (2002)), so runtime
support must instrument all potentially racy memory accesses. (Although sound static analysis can
identify some accesses as definitely DRF, instrumenting the remaining potentially racy accesses
is still expensive (von Praun and Gross 2003; Lee et al. 2012; Choi et al. 2002; Elmas et al. 2007).)
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Table 1. All Possible State Transitions for Last-Access States

Synchronization required

Transition Old New Pessimistic Optimistic
type state Access state tracking tracking

Same state
WrExT R/W by T Same

CAS NoneRdExT R by T Same
RdShc R by T Same∗

Upgrading
RdExT W by T WrExT CAS CAS
RdExT1 R by T2 RdShc

∗

Fence RdShc R by T Same∗ CAS Memory fence

Conflicting

WrExT1 W by T2 WrExT2

CAS Coordination
WrExT1 R by T2 RdExT2
RdExT1 W by T2 WrExT2
RdShc W by T WrExT

*An upgrading transition to RdShc gets the counter value c from a monotonically increasing global counter.

A read by T of an object in the RdShc state requires a fence transition if and only if a per-thread counter

T.rdShCount < c [Bond et al. 2013].

Tracking cross-thread dependencies. To track cross-thread dependencies, instrumentation at each
memory access maintains the last-access state of the accessed object.1 Without loss of generality,
we assume dependence tracking uses the following per-object states:

—WrExT: Write exclusive for thread T. Last read or written by T.
—RdExT: Read exclusive for T. Last read (not written) by T.
—RdShc: Read shared. Last read by multiple threads. The value c helps ensure sound tracking

of write–read dependencies.2

Table 1 shows all possible state transitions, each of which is triggered by a memory access by some
thread. Prior work shows that these state transitions establish happens-before edges (Lamport
1978) that transitively imply all of an execution’s cross-thread dependencies (Bond et al. 2013).

Same-state transitions involve no state change; they do not imply any cross-thread dependen-
cies. Other transitions imply potential cross-thread dependencies. Upgrading transitions either
transitively indicate write–read dependencies or help detect later write–write dependencies. Fence

transitions enable detecting write–read dependencies when a thread reads a RdShc object for the
first time (prior work provides details (Bond et al. 2013), which are not integral to understanding
this article). Finally, conflicting transitions directly indicate write–write, write–read, or read–write
dependencies.

Instrumentation atomicity. To track dependencies accurately, instrumentation at each memory
access must check, and potentially update, the accessed object’s state. These actions must appear to
happen together atomically to avoid missing dependencies; we call this property instrumentation

atomicity. Furthermore, most runtime support requires instrumentation–access atomicity: that the
instrumentation and access appear to execute together atomically. (A notable exception is dynamic
data race detection, which requires only instrumentation atomicity, because it does not need to

1This article uses the term “object” to refer to any unit of shared memory.
2Prior work that introduces the counter provides details on how it helps enable sound tracking of cross-thread dependencies

(Bond et al. 2013).
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know the order of racy accesses.) In any case, instrumentation atomicity and instrumentation–
access atomicity incur similar costs.

To guarantee instrumentation–access atomicity in the presence of data races, much existing
runtime support uses instrumentation that performs atomic operations at every memory access,
which we call pessimistic tracking (Section 2.1). Alternatively, optimistic tracking eschews atomic
operations at non-communicating accesses but requires inter-thread coordination at some com-
municating accesses (Section 2.2).

We emphasize that the instrumentation and per-object states used by dependence tracking, as
well as the synchronization needed to ensure instrumentation–access atomicity, are used by run-
time support only, and are not visible to programmers.

2.1 Pessimistic Tracking

Pessimistic tracking provides instrumentation–access atomicity via a small critical section around
each access and its instrumentation. As Table 1 indicates, pessimistic tracking requires an atomic
operation (e.g., compare-and-swap instruction) at every access. The following pseudocode shows
typical instrumentation at a program store. (Instrumentation at a load is similar but more complex,
since there are more possible state transitions.)

do {

s = o.state; // load per-object metadata

} while (s == LOCKED || !CAS(&o.state, s, LOCKED));

if (s != WrExT) { // T is the executing thread

/* handle potential cross-thread dependence(s) */

}

o.f = ...; // program store

memfence; // type of fence depends on program access type

o.state = WrExT; // unlock and update metadata

The instrumentation starts a critical section by “locking” the object’s state (represented as o.state)
using a special LOCKED value.3 If the current state is any state other than WrExT (T is the current
executing thread), then a potential cross-thread dependence exists, requiring additional runtime-
support-specific work (indicated by the comment /* handle ... */ ). For example, a dependence
recorder might record the dependence in a log; STM might check whether the access conflicts
with an ongoing transaction (and pause or abort a transaction if so).

Performance. Pessimistic tracking requires frequent atomic operations and memory fences,
which slow program execution substantially by triggering remote cache misses and serializing
out-of-order execution. In our experiments on benchmarked versions of large, real-world Java pro-
grams, pessimistic tracking (without any runtime support on top of it) slows programs by more
than 4× on average (Section 6.2.2).

Existing runtime support commonly employs pessimistic tracking (e.g., Flanagan and Freund
(2009), LeBlanc and Mellor-Crummey (1987), Lee et al. (2012), Harris and Fraser (2003), and
Flanagan et al. (2008)). We note that existing approaches often avoid performing an atomic oper-
ation for every memory access. For example, STM systems can use instrumentation that avoids
atomic operations for accesses to the same object in the same transaction (Harris and Fraser
2003). STM can avoid atomic operations at loads by validating them lazily, which requires memory
fences (e.g., Saha et al. (2006)), although many of these can be safely removed (Dalessandro and

3The atomic operation CAS(addr, oldVal, newVal) attempts to update addr from oldVal to newVal, returning true on success.
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Fig. 1. Pseudocode for optimistic tracking’s instrumentation slow path (for program stores only) and coor-

dination. T is the executing thread. The pseudocode omits memory fences required by the implementation.

Scott 2012), and stores and associated synchronization can be deferred until commit and uses less
synchronization but potentially hurt scalability (e.g., Dalessandro et al. (2010)). Data race detec-
tors can avoid atomic operations for repeated accesses in the same synchronization-free region
(e.g., Flanagan and Freund (2009)). Nonetheless, atomic operations and memory fences remain
frequent enough to incur high overhead. Other approaches have sidestepped explicit dependence
tracking but incur other limitations and costs, for example, DoublePlay detects conflicts implic-
itly by using speculation and replication, but it adds high overhead unless extra cores are avail-
able (Veeraraghavan et al. 2011).

2.2 Optimistic Tracking

In contrast, optimistic tracking avoids synchronization at most accesses. Prior work uses optimistic
tracking either to implement program locks (also known as biased locking) (Section 7) (Russell and
Detlefs 2006; Kawachiya et al. 2002; Burrows 2004) or to track cross-thread dependencies (von
Praun and Gross 2001; Bond et al. 2013; Scales et al. 1996; Jiang et al. 2015). This article focuses on
the latter context.

Optimistic tracking provides instrumentation–access atomicity without requiring synchroniza-
tion at accesses that trigger no state change, but it requires coordination at accesses that trigger
conflicting state changes. Table 1 shows the differing kinds of synchronization needed for each
transition type. The following pseudocode shows the instrumentation added at a program store

(instrumentation for a load is similar but more complex):

if (o.state != WrExT) { // fast path

slowPath(o); /* handle potential cross–thread dependence(s) */

}

o.f = ...; // program store

If the object’s state is already WrExT, then the instrumentation takes only the synchronization-
free fast path. Otherwise, the instrumentation executes the slow path, shown in Figure 1, which
changes the state and handles the possible cross-thread dependence. Upgrading transitions require
an atomic operation to avoid racing with other threads changing the state. Fence transitions require
a memory fence to ensure visibility for write–read dependencies.
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Conflicting transitions require coordination. In optimistic tracking, conflicting transitions (last
four rows of Table 1) require that threads coordinate with each other to ensure that thread(s) do
not continue performing unsynchronized same-state transitions to the object.

Figure 1 shows the instrumentation slow path, for a program store only. Suppose a thread,
which we call the requesting thread, reqT, wants to write to an object that was last accessed by
other thread(s), each of which we call a responding thread, respT. If the object’s state is WrExrespT or

RdExrespT, then there is one responding thread, respT. If its state is RdShc, then all other threads are

responding threads, and reqT coordinates with each responding thread separately. For simplicity
of exposition, we describe the case of a single responding thread respT. To initiate coordination,
reqT first atomically changes the object’s state to an intermediate state WrExInt

reqT (line 9), which

simplifies the protocol by allowing only one thread at a time to initiate coordination for an object.
If there is another thread that has already changed the object to an intermediate state, then reqT

waits for the other thread to finish coordination (lines 8–12). reqT then coordinates with respT

(line 13) to ensure that reqT’s state change does not interrupt respT’s instrumentation–access
atomicity.

The responding thread respT participates in coordination only when it is at a safe point: a pro-
gram point that is definitely not in the middle of instrumentation or its corresponding access—thus
preserving instrumentation–access atomicity. Conveniently, managed language VMs already place
safe points at periodic points in compiled code (e.g., method entries and loop back edges) so threads
can be stopped promptly, for example, for stop-the-world garbage collection. Blocking operations,
such as waiting to acquire a lock or for I/O, are also safe points.

If respT is at a blocking safe point, then reqT coordinates with respT implicitly by updating
respT’s status atomically, which respT will see when it finishes blocking. The helper method
sendRequest() returns true if and only if it performs an implicit request. Otherwise, reqT coor-
dinates with respT explicitly: reqT sends a request to remoteT by adding a request to respT’s re-

quest queue and then waits for respT to respond at respT’s next safe point. (Figure 1 does not show
the actions of respT.) Whenever a safe point responds (implicitly or explicitly) to coordination
request(s), it is called a responding safe point. An important detail is that while reqT waits for an
explicit coordination response, it acts as a blocking safe point (line 19), so other threads trying to
access other objects can perform implicit requests with reqT acting as a responding thread, thus
avoiding deadlock. Figure 2 illustrates how coordination works when using an explicit request.
Finally, reqT changes the state to WrExT (line 14) and proceeds with its access.

Performance. Optimistic tracking exploits a tradeoff: It avoids synchronization in the common,
non-conflicting case but requires coordination in the uncommon, conflicting case. For programs
that perform little communication, optimistic tracking incurs low overhead, as Section 6.2.2 shows.
However, for programs that perform more communication (e.g., as little as 0.5% of accesses con-
flicting), optimistic tracking incurs high overhead (e.g., >100% runtime overhead).

The following table reports costs of different kinds of state transitions, averaged across all pro-
grams (Section 6.1 describes overall experimental methodology):

Pessimistic Optimistic

Same state Conflicting
Explicit Implicit

CPU cycles 150 47 9,200 360

The average time in CPU cycles for pessimistic instrumentation is 150 cycles, which is largely
independent of the transition type. Optimistic instrumentation’s cost is only a few dozen cycles for
non-communicating accesses (Same state), but conflicting transitions that use Explicit coordination
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Fig. 2. Coordination using an explicit request. (1) respT accessed an object o previously. (2) reqT wants to

access o. It changes o’s state to RdExInt
reqT

or WrExInt
reqT

and enters a blocked state, waiting for respT’s response.

(3) respT reaches a safe point. (4) respT performs runtime-support-specific actions and then responds. (5)

respT leaves the safe point. (6) reqT sees the response. (7) reqT changes o’s state to WrEx
reqT

or RdEx
reqT

and proceeds to access o.

cost 2–3 orders of magnitude more by incurring the latency of roundtrip communication. Implicit

coordination requires atomic operations but incurs no latency, so its cost is relatively close to the
cost of a pessimistic access.

Goals and outline. The limitations of pessimistic and optimistic tracking motivate our work in
two directions:

—To develop a hybrid of pessimistic and optimistic tracking that uses optimistic tracking
for most accesses but avoids most coordination by using pessimistic tracking for most
conflicting accesses.

—To reduce or hide the coordination latency of explicit requests to improve optimistic track-
ing’s performance.

Section 3 introduces an approach called hybrid tracking that combines pessimistic and optimistic
tracking and extends existing runtime support based on this approach. Section 4 presents an ap-
proach called relaxed tracking that optimizes optimistic tracking’s coordination that uses explicit
requests and extends existing runtime support. The remaining sections describe our implementa-
tion and evaluation and compare with related work.

3 HYBRID TRACKING AND RUNTIME SUPPORT

This section presents HT, which combines pessimistic and optimistic tracking soundly and effi-
ciently. Section 3.1 presents challenges inherent in combining pessimistic and optimistic tracking
and introduces a hybrid state model that addresses these challenges. Sections 3.2 and 3.3 design
sound and efficient runtime support using the hybrid state model. Section 3.4 describes a policy
that decides between pessimistic and optimistic states at runtime.

3.1 Hybrid State Model

Hybridizing pessimistic and optimistic tracking is inherently difficult because of an inherent mis-
match between them. The hybrid state model addresses this mismatch.

3.1.1 The Pessimistic–Optimistic Mismatch. Pessimistic and optimistic tracking are fundamen-
tally different in two key ways that complicate hybridization. First, pessimistic and optimistic
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tracking differ in how they transfer access privileges. Pessimistic tracking unlocks an object’s
state after a program access, allowing another thread to lock the state. Optimistic tracking, on the
other hand, does not unlock the state after an access; instead, a thread relinquishes access priv-
ileges only when requested by another thread. To support objects being in both pessimistic and
optimistic states, it seems that each access must be followed by potentially costly instrumentation
that conditionally unlocks the state (depending on whether the state is pessimistic).

Second, pessimistic and optimistic tracking provide instrumentation–access atomicity differ-
ently. Pessimistic tracking provides atomicity of each instrumentation–access pair. Optimistic
tracking provides atomicity interrupted at responding safe points—including conflicting accesses
that respond to coordination requests. This mismatch implies that, for a hybrid approach, the atom-
icity of instrumented code can be interrupted at points that are statically unpredictable, making it
problematic to design efficient runtime support that detects and controls cross-thread dependen-
cies. This problem becomes clearer in the context of specific kinds of runtime support; Sections 3.2
and 3.3 explain these challenges in the contexts of the dependence recorder and region serializ-
ability (RS) enforcer.

In the early stages of this work, we designed and implemented a straightforward approach for
combining pessimistic and optimistic tracking (Cao et al. 2014). This approach added conditional
instrumentation after every program access to unlock the state when it was pessimistic. We built
a dependence recorder and RS enforcer on top of this hybrid approach, but they added significant
overhead to perform conditional instrumentation and to deal with atomicity being interrupted
unpredictably at many program points.

To overcome the mismatch between pessimistic and optimistic tracking that impaired our initial
design, we introduce the following insight: The hybrid state model can and should defer unlocking

of pessimistic states. Deferred unlocking consists of the following design points:

—A thread defers unlocking pessimistic states until the next program synchronization release

operations (PSRO) such as lock release, monitor wait, or thread fork.
—To avoid substantial false contention from deferred unlocking and concurrent readers,

pessimistic states use reader–writer locking.
—A thread encountering any remaining contention “falls back” to using coordination to

change an object’s state.

Interestingly, if instrumentation encounters contention trying to lock a pessimistic state, then the
access must be involved in an object-level “data race”: two unsynchronized, conflicting accesses to
the same object but not necessarily the same field or array element. An object-level data race is a
necessary but insufficient condition for a true (precise) data race. Prior work shows that object-
level data races closely (over)approximate precise data races in practice (von Praun and Gross
2001). The performance of deferred unlocking relies on object-level data races being rare, so few
(if any) pessimistic transitions encounter contention.

Deferred unlocking is the key technical insight of HT. Intuitively, deferred unlocking bridges
the pessimistic–optimistic mismatch by making pessimistic tracking more “optimistic”: Threads
do not unlock pessimistic states until PSROs but incur high coordination cost (the same as for
optimistic states) if a conflicting access occurs in the meantime.

Example. Figure 3 illustrates deferred unlocking of pessimistic states. The example assumes
o is in pessimistic states for the accesses shown. In Figure 3(a), each thread executes a criti-
cal section acquiring the same program lock m. Code comments (e.g., /* lock o.state */ ) summa-
rize the runtime behavior of HT’s instrumentation. Immediately before T1 releases m (a PSRO),
instrumentation unlocks all pessimistic states that T1 has locked, including o’s state. T2 thus locks
o’s state without contention.
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Fig. 3. Deferred unlocking encounters contention only for object-level data races. Comments show instru-

mentation actions assuming o is in pessimistic states.

In contrast, in Figure 3(b), the two accesses are involved in an object-level data race (in this case,
a true data race). As a result, T2 encounters contention when trying to lock o’s state. T2 handles
this case safely by falling back to using coordination: T2 sends a coordination request to T1, which
unlocks all pessimistic states at the next responding safe point, enabling T2 to lock o’s state.

3.1.2 States, Terminology, and Transitions. The hybrid state model uses the following states:

—Pessimistic states can be either unlocked or locked. The pessimistic unlocked states are
WrExPess

T , RdExPess
T , and RdShPess

c . The pessimistic locked states are WrExRLock
T , WrExWLock

T ,

RdExRLock
T , and RdSh

RLock(n)
c . To support reader–writer locking, a WrExT state can be ei-

ther read- or write-locked, and a RdSh
RLock(n)
c state is read-locked by n threads. The read-

locked write-exclusive state (WrExRLock
T ) enables a second concurrent reader to upgrade

to RdSh
RLock(2)
c , instead of encountering contention. To support reentrant read locks, each

thread also maintains a read set for objects whose states it has read-locked.

—The optimistic states are WrEx
Opt

T , RdEx
Opt

T , and RdSh
Opt
c .

A pessimistic (or optimistic) object is an object whose state is pessimistic (optimistic). A pessimistic

(optimistic) access is a program access to a pessimistic (optimistic) object. A pessimistic (optimistic)

transition is a transition from a pessimistic (optimistic) state to another pessimistic (optimistic)
state. The model also supports transitions between pessimistic and optimistic states.

Figure 4 shows at a high level the state transitions in the hybrid state model. The labeled cir-
cles summarize the three types of states: pessimistic unlocked, pessimistic locked, and optimistic.
Arrows represent transitions between states: bold, red arrows show transitions requiring coordi-
nation; other transitions do not require coordination. The rest of this section further explains Fig-
ure 4, focusing on transitions that are different from those shown in Table 1. Appendix A shows
pseudocode for HT’s instrumentation. Appendix B presents a table detailing every state transition.

Pessimistic uncontended transitions. Any access to an unlocked pessimistic state triggers an un-

contended transition to a corresponding locked state (see the transition labeled “Any access (uncon-
tended)” in Figure 4). For example, a read (or write) by T1 to an object in WrExPess

T1 state triggers an

uncontended transition to WrExRLock
T1 (WrExWLock

T1 ). A read by T2 to an object in WrExPess
T1 triggers

an uncontended transition to RdExRLock
T2 .
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Fig. 4. High-level state transition diagram for the hybrid state model. The left and right halves show tran-

sitions starting in pessimistic and optimistic states, respectively. The diamonds on the vertical dashed line

indicate decisions by the adaptive policy, described in Section 3.4.

If an access to a locked state does not conflict with the state, then the transition is uncontended
(labeled “Non-conflicting access (uncontended & possibly reentrant)”). For example, a read by T2

to a RdExRLock
T1 object triggers an uncontended transition to RdSh

RLock(2)
c (read-locked by T1 and

T2). A write by T1 to a WrExRLock
T1 object triggers an uncontended transition to WrExWLock

T1 . If an

uncontended transition requires no state change at all (e.g., a read by T1 to an object in RdExRLock
T1

state), then we also call the transition reentrant. Reentrant transitions require no atomic operations.

Unlocking of pessimistic states. To support deferred unlocking, each thread records every pes-
simistic object whose state it has locked in the thread’s lock buffer. The lock buffer is logically a set
of objects, but it can be implemented as a list of unique objects. A thread only needs to add an ob-
ject to its lock buffer when it changes the object from a pessimistic unlocked state to a pessimistic

locked state or when it read-locks a RdSh
RLock(n)
c object for the first time according to the read set,

guaranteeing the uniqueness of objects in the lock buffer.
Every PSRO and responding safe point flushes the lock buffer by unlocking the states of all ob-

jects in the buffer (transition labeled “PSRO & responding safe point”). The objects can be unlocked

in any order. Unlocking a RdSh
RLock(n)
c object means transitioning to RdSh

RLock(n−1)
c (if n>1) or the

unlocked state RdShPess
c (if n=1). Whenever a thread flushes its lock buffer, it also clears its read

set for read-locked objects.

Pessimistic contended transitions. An access that conflicts with a pessimistic locked state cannot
immediately change the state. It triggers a contended state transition, which initiates coordina-
tion with the thread(s) that have locked the object’s state (transition labeled “Conflicting access
(contended)”).

Since every responding safe point flushes the lock buffer, the thread(s) that have locked the
state will unlock it, allowing the accessing thread to change the state into a compatible pessimistic
locked state. By using coordination to trigger early unlocking of states, contended transitions
ensure responsiveness and deadlock freedom when an execution violates deferred unlocking’s
assumption of object-level data race freedom.

As an example, in Figure 3(b), a read by T2 to an object in WrExWLock
T1 triggers a contended

transition: T1 unlocks the state to WrExPess
T1 before responding to coordination. T2 then performs

an uncontended transition from WrExPess
T1 to RdExRLock

T2 .
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Fig. 5. The challenge of recording pessimistic transitions that involve conflicting states.

Transitions between pessimistic and optimistic states. The model supports transitioning to an opti-
mistic state whenever it unlocks a pessimistic state (upper diamond in Figure 4) and to a pessimistic
state from an optimistic state on any conflicting transition (lower diamond).

Although we have designed and presented HT based on the states and transitions in Table 1, our
hybridization approach could in theory be applied to other optimistic and pessimistic approaches
that use different state models to track dependencies.

3.2 Recording and Replaying Dependencies

This section demonstrates how runtime support that needs to detect (i.e., monitor) cross-thread
dependencies soundly can use the hybrid state model. We build a dependence recorder based on
HT that identifies and records happens-before edges that transitively imply all cross-thread de-
pendencies in the execution.

3.2.1 Optimistic Dependence Recorder and Replayer. Multithreaded record and replay helps pro-
grammers debug nondeterministic multithreaded programs, and it provides systems benefits such
as replication-based fault tolerance (Ronsse and De Bosschere 1999; LeBlanc and Mellor-Crummey
1987; Lee et al. 2010, 2012; Weeratunge et al. 2010; Park et al. 2009; Veeraraghavan et al. 2011). Prior
work introduces a record and replay approach that designs (1) an optimistic recorder on top of op-
timistic tracking and (2) an optimistic replayer for the recorder (Bond et al. 2013, 2015). (The opti-
mistic replayer is “optimistic,” because it replays dependencies recorded by the optimistic recorder.
It does not use optimistic tracking.) The optimistic recorder identifies and records happens-before
edges at transitions among WrExOpt, RdExOpt, and RdShOpt states. It records each happens-before
edge by recording the edge’s source and sink in per-thread logs. In another execution, the opti-
mistic replayer replays each happens-before edge by making the sink wait for its corresponding
source to be reached.

3.2.2 Hybrid Dependence Recorder and Replayer. We design a hybrid recorder based on HT and
a hybrid replayer for the hybrid recorder. For optimistic transitions, the hybrid recorder uses the
same approach as the optimistic recorder. For some, but not all, pessimistic transitions, the hybrid
recorder uses essentially the same approach as for optimistic transitions, since pessimistic and
optimistic states and transitions each maintain the same last-access information. For example, the

recorder can record a happens-before edge for RdExPess
T →RdSh

RLock(2)
c in the same way that it

records RdEx
Opt

T →RdSh
Opt
c .

Pessimistic conflicting transitions. The key challenge is pessimistic transitions that involve con-
flicting states (i.e., a transition from WrExPess

T1 to WrExWLock
T2 or RdExRLock

T2 or from RdExPess
T1 or

RdShPess
c to WrExWLock

T2 ). Figure 5(a) shows an example that illustrates why these transitions are
problematic. For this example, suppose pessimistic transitions do not defer unlocking. Thread T1

immediately unlocks an object o to WrExPess
T1 state after a write to o; then T2 wants to read o. It
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is challenging to identify and record the source of the happens-before edge, because T1 continues
executing during the pessimistic transition by T2. An eligible source needs to be (1) afterT1’s write
to o, in order to capture the cross-thread dependence soundly but (2) no later than T1’s current
execution point e1, or else replay could deadlock: suppose T2 records a future execution point e2,
and T1 writes to o again (not shown) between e1 and e2. T1 would record an execution point after

T2’s read of o as the source of another happens-before edge, thus recording cyclic dependencies
that cannot be replayed successfully.

In contrast, an optimistic conflicting transition triggers coordination, as shown in Figure 5(b).
T1 stops to respond to T2 at a safe point, providing an opportunity to record the happens-before
source. The responding safe point satisfies both requirements for an eligible source.

The hybrid recorder could record every pessimistic access, but they are frequent enough that
recording each one would be expensive. Alternatively, incrementing a counter at every pessimistic
access would be efficient—but the replayed run would not know which accesses had been pes-
simistic versus optimistic during the recorded run. We encountered these challenges in our initial
design of the hybrid recorder (Section 3.1.1), which performed worse on average than the opti-
mistic recorder.

Utilizing deferred unlocking. These challenges are naturally addressed by, and thus motivate the
use of, deferred unlocking (Section 3.1.1). Deferred unlocking of pessimistic states effectively limits
the potential sources of happens-before edges to PSROs and responding safe points.

The hybrid recorder handles pessimistic uncontended transitions involving conflicting states as
follows. In both recorded and replayed executions, instrumentation at every PSRO and responding
safe point increments a per-thread release counter. Using Figure 3(a) from Section 3.1.1 as an ex-
ample, T1 increments its release counter before it releases the program lock m. When T2 changes
the state to RdExRLock

T2 , it records the happens-before edge in its log by reading T1’s release counter
and recording its value. Since each PSRO and responding safe point has release semantics, and
each state change has acquire semantics, T2 is guaranteed to read a value of T1’s release counter
that is at least as great as the value at the first PSRO after T1 writes to o. In addition, T2 cannot
read a value that T1’s release counter has not reached, preventing deadlock during replay. During
replay, T2 waits for T1’s release counter to reach the recorded value.

For a contended transition as in Figure 3(b), T2 initiates coordination. T1 unlocks o’s state to
WrExPess

T1 , responds at a safe point, and records the response just as it would record an optimistic

coordination response. T2 then records its uncontended transition from WrExPess
T1 to RdExRLock

T2 as
described above.

3.3 Enforcing Region Serializability

This section applies the hybrid state model to enforcing serializability (atomicity) of executed code
regions, demonstrating how the model enables controlling cross-thread dependencies.

3.3.1 Optimistic RS Enforcer. Modern language memory models make strong guarantees for
DRF programs but provide virtually no guarantees for programs with data races (Boehm and Adve
2008; Manson et al. 2005; Adve and Hill 1990; Adve and Boehm 2010; Boehm 2012). Prior work
enforces memory models that provide RS even for programs with data races (Ouyang et al. 2013;
Sengupta et al. 2015; Hammond et al. 2004). We focus on work that introduces a memory model
called statically bounded region serializability (SBRS) that provides serializability of regions that
are bounded by program synchronization operations, method calls, and loop back edges (Sengupta
et al. 2015).

Prior work, which we call the optimistic enforcer, enforces SBRS using optimistic tracking at
each object access (Sengupta et al. 2015). The optimistic enforcer provides region serializability via
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Fig. 6. The challenge of building an RS enforcer using HT.

two-phase locking: Each object access uses optimistic tracking to change the state if needed, and
a region does not relinquish objects’ states (i.e., does not respond to coordination requests) until
the region ends. However, to avoid deadlock, a thread may respond to coordination requests while
itself waiting to complete a transition (lines 10 and 19 in Figure 1 from Section 2.2), relinquishing
ownership of objects’ states and thus potentially violating serializability.

The optimistic enforcer transforms regions at compile time so they execute either idempotently
or speculatively and can thus restart safely after responding to a coordination request, as prior
work describes in detail (Sengupta et al. 2015).

3.3.2 Hybrid RS Enforcer. To understand the challenges of using HT for the RS enforcer, con-
sider how an RS enforcer based on pessimistic tracking would work. To preserve serializability, no
pessimistic state locked during a region’s execution should be unlocked until the region completes.
At region end, instrumentation should unlock each pessimistic state locked during the region’s
execution.

However, using hybrid tracking presents a challenge, as illustrated in Figure 6. The compiler
cannot predict whether the accesses to objects o and p will use pessimistic versus optimistic track-
ing, the end of the region needs conditional code that checks which pessimistic states to unlock,
if any. Assuming most accesses will be optimistic, most regions would need to unlock no pes-
simistic states. Since statically bounded regions are short, the overhead of checking at the end of
each region would be significant. We encountered these challenges in our initial design of a hybrid
enforcer (Section 3.1.1).

Using deferred unlocking. Our hybrid enforcer relies on deferred unlocking to address these chal-
lenges. HT defers unlocking of pessimistic states until PSROs. PSROs are relatively infrequent
compared to region boundaries, so it is relatively inexpensive to flush the lock buffer at each PSRO.
Regions thus unlock pessimistic states only at region boundaries, preserving SBRS.

The one exception is pessimistic contended transitions, which trigger coordination in the middle
of a region. Since a thread that initiates coordination might respond to other threads’ coordina-
tion requests, a thread restarts a region that performs coordination, just as it does for optimistic

conflicting transitions.

3.4 Adaptive Policy

This section addresses how to choose between pessimistic and optimistic states at runtime. We
introduce a cost–benefit model for deciding whether an object should be in pessimistic or optimistic
states and an efficient policy that approximates the cost–benefit model based on online profiling.

3.4.1 Cost–Benefit Model. The basic idea of the cost–benefit model is that an object’s state
should be pessimistic (versus optimistic) if and only if the total time incurred on optimistic tran-
sitions for the object would exceed the total time incurred on pessimistic transitions.
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A limitation of our cost–benefit model is that it models pessimistic transitions based on pes-
simistic tracking without deferred unlocking. Thus, the model assumes that all accesses to objects
in optimistic states that trigger conflicting transitions (and thus coordination) would trigger un-

contended (and thus coordination-free) non-reentrant pessimistic transitions if the objects were in
pessimistic states.

The cost–benefit model considers each object individually. Let Npess be the number of pessimistic
transitions that would occur for the object if its state were always pessimistic. Npess thus counts
all program accesses to an object. Let Nconfl and NnonConfl be the numbers of conflicting and non-
conflicting transitions, respectively, that would occur if the state were optimistic. Since together
Nconfl and NnonConfl count all accesses,

Npess = NnonConfl + Nconfl. (1)

Let TnonConfl, Tconfl, and Tpess be the average time costs for an optimistic non-conflicting,4 opti-
mistic conflicting,5 and pessimistic transition, respectively. The model considers these values to
be (platform-specific) constants computed ahead of time, e.g., from the table in Section 2.2. To
minimize runtime, an object’s state should be optimistic if and only if the following is true:

Tpess × Npess ≥ TnonConfl × NnonConfl + Tconfl × Nconfl. (2)

The left-hand side of Equation (2) is the total time spent on state transitions if the object’s
state were pessimistic. The right-hand side is the total time on state transitions if the state were
optimistic.

Substituting Equation (1) into Equation (2) and transforming it yields:

NnonConfl ≥ Kconfl × Nconfl, (3)

where Kconfl is a runtime constant:

Kconfl =
Tconfl − Tpess

Tpess − TnonConfl
.

Thus, according to Equation (3), using the cost–benefit model requires knowing only the numbers
of non-conflicting and conflicting transitions (NnonConfl and Nconfl) or merely their ratio.

3.4.2 Profile-Guided Adaptive Policy. Using the cost–benefit model to change each object’s state
to optimistic or pessimistic at runtime presents several challenges that we address as follows.

Predicting the future. The cost–benefit model seems to require oracle knowledge: It needs to
know the future ratio NnonConfl/Nconfl when allocating an object to initialize its state. The adaptive
policy instead uses online profiling, assuming future behavior approximates past behavior in the

same execution. Each object newly allocated by thread T starts in the WrEx
Opt

T state.

Efficient profiling. Counting optimistic same-state transitions would be expensive, because
they are common (by design). The adaptive policy thus profiles only conflicting transitions for
optimistic objects,6 and it counts all pessimistic transitions, since they are relatively infrequent
(by design). The resulting policy readily transfers potentially high-conflict objects to pessimistic
states—at which point more-invasive profiling categorizes every pessimistic transition in order to
determine whether an object should stay in pessimistic states or change back to optimistic states.

4The model computes TnonConfl as simply the time for same-state transitions, ignoring other non-conflicting transitions

(upgrading and fence transitions), which each incur a cost similar to a pessimistic transition’s cost.
5Tconfl is the time for a conflicting transition using explicit coordination.
6The policy counts only transitions that use explicit coordination, since implicit coordination is roughly as expensive as a

pessimistic transition.
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For each object o, the profiling counts the number of optimistic conflicting transitions
o.numConflicts. If an object experiences “enough” conflicting transitions, that is, if

o.numConflicts ≥ Cutoffconfl, (4)

then the policy transitions the object to a pessimistic state.
For every pessimistic transition, profiling counts whether it was non-conflicting or conflicting.

The policy changes an object back to optimistic based on the following formula, derived from
Eqution (3):

NnonConfl ≥ Kconfl × Nconfl + Inertia. (5)

The parameter Inertia avoids prematurely changing back to optimistic states until a significant
amount of profiling has occurred.

Checks and balances. By using a low value for Cutoffconfl, the adaptive policy quickly transitions

objects to pessimistic states if they might be better off in pessimistic states, based on Equation (4).
Then profile-guided decisions based on Equation (5) can more accurately distinguish objects that
should be in pessimistic versus optimistic states. To avoid repeatedly switching an object between
optimistic and pessimistic states that should ideally remain optimistic, the policy disallows re-

peated transitions to pessimistic: Each object starts in the WrEx
Opt

T state; it can transition to pes-
simistic and later can transition back to optimistic; after that, it must stay optimistic. Alterna-
tively, the policy could allow repeated transitions from optimistic to pessimistic but with a greater
Cutoffconfl value.

Per-object profiling. Profiling each object separately might limit the adaptive policy’s effective-
ness. For example, if many objects each trigger only a few conflicting transitions, the policy will
not transfer them to pessimistic states early enough. Profiling objects in aggregate (e.g., by ob-
ject type) could enable allocating certain objects directly into pessimistic states. However, for our
evaluated workloads, our policy gets nearly all of the possible benefit (Section 6.2.3). Thus, our
implementation uses only per-object profiling.

4 RELAXED TRACKING AND RUNTIME SUPPORT

Pessimistic and optimistic tracking (Section 2), as well as hybrid tracking (Section 3), track
each cross-thread dependence soundly (i.e., do not miss any dependencies) and preserve
instrumentation–access atomicity. We thus classify them as strict dependence tracking approaches.

In contrast, this section introduces a novel approach called RT that relaxes the instrumentation–
access atomicity guarantee of optimistic tracking to reduce its coordination latency. RT allows
threads to continue executing program code without receiving coordination response(s) for a state
change. The challenge in making RT work lies in preserving both program semantics and runtime-
support-specific guarantees. Section 4.1 presents RT, and Sections 4.2 and 4.3 present runtime
support based on RT.

4.1 Relaxed Tracking

RT consists of two components: a relaxed coordination protocol (Section 4.1.1) and support for
performing relaxed accesses that overlap with coordination (Section 4.1.2).

4.1.1 The Relaxed Coordination Protocol. RT modifies the way in which optimistic tracking
handles an explicit coordination request. In RT, a requesting thread does not wait for responses
after sending explicit requests. Thus, a requesting thread receives responses at some later point
in its execution, and a requesting thread may have outstanding requests for multiple objects
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Fig. 7. The relaxed coordination protocol (for explicit requests only).

simultaneously. To support this functionality, the relaxed coordination protocol differs from
optimistic tracking’s strict coordination protocol (Section 2.2) in the following ways:

—A responding thread can respond either implicitly or explicitly, depending on whether the
requesting thread is blocking or actively executing program code.

—To support explicit responses, relaxed coordination extends strict coordination’s request
queue to a request-and-response queue that holds both requests and responses. At safe
points, threads can receive not only requests but also responses.

Figure 7 shows how the relaxed coordination protocol works. The requesting thread reqT sends
an explicit request to the responding thread respT and continues execution. When respT reaches
a safe point, it responds to reqT either explicitly or implicitly. If reqT is blocked, then respT

responds implicitly, as shown in Figure 7(a), by first putting reqT into a “blocked and held” state
(so reqT does not leave the blocking state unless it is “unheld”) and then changing the object’s
state. Finally, the responding thread removes its hold on the requesting thread. Otherwise (reqT

is not blocked), respT responds explicitly, as Figure 7(b) shows, by adding a response to reqT’s
queue. Once reqT reaches a safe point, it changes the object’s state. Although Figure 7 shows a
single requesting thread sending requests to respT, multiple requesting threads can send requests
to respT before respT reaches a safe point. When respT reaches a safe point, it responds to each
queued request in turn.

For a conflicting transition from WrExrespT or RdExrespT to WrExreqT or RdExreqT, reqT receives

just one response. In contrast, for a transition from RdShc to WrExreqT, reqT may need to wait for

multiple responses. The protocol maintains a counter of unreceived responses for each object in
this situation, which responding and requesting threads decrement as they respond implicitly and
receive explicit responses, respectively. In all cases, the requesting thread maintains the object in
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Fig. 8. The fast and slow paths of RT’s instru-

mentation at stores.

Fig. 9. The fast and slow paths of RT’s instru-

mentation at loads.

an intermediate state, WrExInt
reqT or RdExInt

reqT, until it has received all response(s). In the meantime,

no other thread can change the object’s state.
Figures 8 and 9 show the pseudocode for RT’s load and store instrumentation. RT uses the same

fast path as optimistic tracking (Section 2.2), except that it skips the original program access if
it takes the slow path, delegating the access to the slow path instead. For both loads and stores
in the slow path, RT first changes the object’s state to an intermediate state, WrExInt

T (line 18 in

Figure 8) or RdExInt
T (line 19 in Figure 9), and initiates coordination by sending a request to the

responding thread (line 19 in Figure 8 and line 19 in Figure 9). After sending the coordination
request, T continues execution immediately.

Since T does not wait for responses, it instead receives responses at safe points (not shown).
A responding thread responds either implicitly or explicitly, depending on whether or not the re-
questing thread is at a blocking safe point. Before T receives a response, the conflicting object o

stays in the WrExInt
T or RdExInt

T state, since both T and other threads might perform accesses to

it. If the access is a store, and o is in RdExInt
T state, then RT upgrades the state to WrExInt

T (line 13
in Figure 8), in order to track relaxed stores, introduced shortly. If the access is a store and o’s
state is WrExInt

∗ but not WrExInt
T (i.e., another thread is performing relaxed stores to o), then the

access needs to wait until the state has changed to a non-intermediate state. If the access is a load,
as long as o is in WrExInt

∗ or RdExInt
∗ (i.e., an intermediate state for any thread), then T can avoid

performing coordination and proceed to perform the load.
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We note that RT’s relaxed coordination protocol differs from the strict coordination protocol for
explicit requests only. In RT, when coordination uses an implicit request, it follows the same steps
as strict coordination.

Interestingly, the relaxed coordination protocol handles requests and responses in a largely sym-
metric way. Requests and responses each involve sending a message to another thread, either im-
plicitly if the receiving thread is at a blocking safe point or else explicitly via a queue that the
receiving thread processes at its next safe point.

4.1.2 Handling Relaxed Accesses. A thread T performs relaxed accesses7 to objects whose states
are not (yet) in the needed state. RT defers a relaxed store until it receives coordination response(s)
for the object’s state. As we explain, relaxed stores still conform to the language memory model as
long as they are not deferred past synchronization release operations. RT performs a relaxed load

by loading from an object before receiving coordination response(s) for the object’s state. Relaxed
loads do not affect program correctness, but they can affect runtime support’s guarantees.

Relaxed stores. A thread T performs a relaxed store by deferring the store, buffering the location
(address) and new value in T’s store buffer (line 26 in Figure 8). The intuition behind deferring stores
is that another thread may be simultaneously (racily) accessing the same location, so allowing the
store to be performed could cause a cross-thread dependence to be missed. Once T gets exclusive
ownership of the conflicting object o (by changing o’s state to WrExT), it commits all relaxed stores
to o using the store buffer. For simplicity, our current design allows relaxed stores by T only to
objects in WrExInt

T state. (We have found that supporting relaxed stores to other intermediate states
provides little benefit.)

Deferring program stores changes program behavior, since other threads can read out-of-date
values from the affected memory locations. However, language memory models, including for
Java and C++, allow substantial reordering of operations, except across synchronization opera-
tions (Adve and Boehm 2010; Boehm and Adve 2008; Manson et al. 2005; Adve and Hill 1990), thus
permitting significant deferring of stores. To conform to the memory model and preserve program
semantics, the key constraint is that stores cannot be deferred past PSROs.

The relaxed coordination protocol completes in bounded time after changing an object’s state
to WrExInt

reqT, since threads execute safe points within a bounded amount of time. After the protocol

completes and the requesting thread changes the object’s state to WrExreqT, the requesting thread

removes the object from its store buffer. Relaxed stores thus become visible to other threads in
bounded time.

Relaxed loads. At a relaxed load by T to an object o, T first checks whether the same location has
already been buffered in T’s store buffer (line 13 in Figure 9). (T only needs to check its store buffer
if o’s state is WrExInt

T .) If so, then T uses the store buffer’s value (line 14 in Figure 9) instead of
loading from memory. Otherwise, T performs the load directly from memory (line 24 in Figure 9).
A relaxed load thus does not affect program semantics: The execution still conforms to the memory
model (performing the load would be permitted in the original program). However, another thread
might be simultaneously (racily) writing to the same memory location, compromising the ability
of runtime support to capture the write–read or read–write dependence soundly.

RT thus handles each relaxed load by logging the loaded value in a runtime-support-specific way

(line 26 in Figure 9). The intuition is that logging the value enables runtime support to handle all
values resulting from potentially untracked cross-thread dependencies. For example, our relaxed

7This article’s relaxed accesses should not be confused with memory_order_relaxed operations on atomic variables in

C/C++ (Boehm and Adve 2008).
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dependence recorder logs the value in order to assist replay (Section 4.2), and our relaxed STM
logs the value in order to validate it later (Section 4.3).

4.1.3 Optimizations at PSROs. As presented so far, a thread must wait at each PSRO for every
outstanding relaxed store (i.e., every entry in its store buffer). This restriction limits RT’s ability to
overlap coordination with program execution; we have found that threads routinely end a critical
section (by releasing a lock) shortly after performing a store to a shared variable. Here we present
two optimizations for avoiding waiting at PSROs. As our evaluation shows, these optimizations
have performance benefits but also drawbacks that lead to mixed performance relative to the base
RT design described so far.

Defer release operations. Instead of waiting at a release operation for outstanding relaxed stores,
a thread can defer the release operation. Our design currently supports deferring lock release oper-
ations. To defer a lock release, a thread continues to hold the lock past the release operation; the
thread records the lock into a per-thread lock buffer. It releases the lock only when all responses
have been received for relaxed stores that executed before the lock release (according to bookkeep-
ing) or right before an acquire that tries to hold a different lock to avoid change lock ordering. This
technique should not to be confused with deferred unlocking in HT (Section 3.1.1), which defers
changing objects’ states instead of releasing program locks.

This behavior naturally preserves program semantics, because a thread continues to hold a lock
while it waits for responses for relaxed stores, effectively expanding the lock’s critical section—
making other threads wait and thus increasing lock contention. Effectively enlarging critical sec-
tions can serendipitously avoid some erroneous behaviors, which may be desirable or undesirable,
depending on the goals and setting.

Avoid stalling at release. An alternate approach is to permit a thread T to continue execution
at a release operation—as long as no other thread may access the object(s) that are the targets
of relaxed stores. A straightforward way to provide this restriction is to disallow all accesses by
other threads to objects in WrExInt

T state. (Note that, in contrast, the base RT design allows loads,
but not stores, to an object in any intermediate state.) This optimization allows threads to continue
without waiting at release operations, but it incurs other costs, because a thread T2 must wait to
access an object in the WrExInt

T1 state.

4.2 Relaxed Dependence Recorder

This section introduces a relaxed dependence recorder for multithreaded record and replay. Our
relaxed recorder extends the optimistic recorder from prior work (Section 3.2.1) by using relaxed,
instead of strict, dependence tracking. The relaxed recorder allows relaxed loads and stores to
objects that are not yet “owned” by the current thread. Given this behavior, how is it possible to
record dependencies accurately and thus guarantee deterministic replay?

We refer back to Figure 7 in Section 4.1 for examples of happens-before edges recorded by
the relaxed recorder. For an implicit response, at point #6, respT records the source of the edge.
At point #8, reqT records the edge’s sink. For an explicit response, respT records the source at
point #5, and reqT records the sink at point #7. Note that if the replayed execution replays these
same edges, it will not necessarily reproduce the same behavior, because the relaxed accesses at
point #3 (and other relaxed accesses potentially overlapping with coordination) are not ordered
by the edge. The key to addressing this problem is to record enough information about loads and
stores that are not well-ordered by happens-before edges, such that they can be replayed faithfully.

Handling stores. To handle relaxed stores to objects in the WrExInt
reqT state, the relaxed recorder

uses the following strategy: reqT records an event for each relaxed store to indicate that the
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store should also be deferred during replay. When stores are performed from the store buffer at
a safe point, reqT records an event indicating that relaxed stores should be performed at that
safe point. By referring to indices of entries in the store buffer, the recorded event unambigu-
ously indicates which stores should be performed from the store buffer at each safe point during
replay.

Handling loads. When a requesting thread reqT loads a value from an object that is in an inter-
mediate state, the responding thread may be simultaneously writing the object. Thus, it does not

seem possible to record a happens-before edge that will yield the same value for the load. Instead,
reqT records the value returned by the load (at point #3 in both Figure 7(a) and Figure 7(b)). A
replayed execution can reuse this value to ensure determinism.

During the recorded execution, subsequent loads to the same memory location record the (possi-
bly updated) loaded value. Whenever reqT handles a load by getting the value from its store buffer
(Section 4.1.2), it still records the value in its log, so a replayed execution can load the correct value
without needing to know which loads should read from the store buffer.

We have not built a replayer for the relaxed recorder due to an engineering challenge in han-
dling relaxed loads of reference values (i.e., references to objects). The base record and replay sys-
tem provides application-level determinism, which does not guarantee each object is located at the
same address in the replayed execution (Bond et al. 2015). Thus, a logged reference value from
the recorded execution is unlikely to point to the same object in the replayed execution. We could
address this challenge by instead recording a unique identifier for the referenced object; the record
and replay system already provides unique identifiers for objects, which consist of the allocating
thread and the value of a per-thread allocation counter to provide deterministic hash codes (Bond
et al. 2015). The replayed execution could use the logged identifier to get a reference to the correct
object in the replayed execution. In the common case, the replayed execution can check whether
performing the load normally would return a reference to the correct object (the object with the
logged identifier). If not, then the replayed execution would need to use a mechanism to look up
objects based on their identifiers.

4.3 Software Transactional Memory

This section describes how we extend an existing STM system to use RT. In essence, our relaxed

STM combines lazy and eager concurrency control in a novel way: It uses eager mechanisms for
most accesses and lazy mechanisms for accesses that would otherwise incur latency.

4.3.1 Optimistic STM. Prior work introduces an STM that uses biased reader–writer locks that
employ optimistic tracking (Zhang et al. 2015). We call this STM the optimistic STM. The opti-
mistic STM employs biased reader–writer locks to provide eager concurrency control: It detects
and resolves conflicts before performing each memory access. Conflict detection and resolution
piggyback on coordination.

Here we focus on how the STM piggybacks on coordination that uses an explicit request. In
that case, the responding thread detects and resolves conflicts between the responding thread’s
transaction and the requesting thread’s transaction or non-transactional access.

4.3.2 Relaxed STM. Extending the optimistic STM to use RT presents challenges. Unless han-
dled properly, the STM could be unable to detect and resolve transactional conflicts for relaxed
loads and stores. Figure 10 shows an example of a problematic execution. Thread T2 performs two
relaxed loads from o.f in a transaction, since o’s state is WrExT1. T1 performs conflict detection
when it responds to T2, but by then T1 has started another transaction that has not accessed o,
so T1 accurately reports no transactional conflict. However, the result is unserializable, because
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Fig. 10. Allowing unhandled relaxed accesses in transactions would lead to serializability violations. The

values in parentheses after each executed store and load are the values written and read, respectively.

T2’s loads see different values. Another problematic issue (not shown) is that performing relaxed
transactional stores directly could lead to unserializable results due to another thread loading the
value simultaneously.

Our relaxed STM addresses these issues as follows. In the relaxed STM, each relaxed, transac-
tional load logs its loaded value and validates the value later. (In Figure 10, T2’s transaction would
fail read validation at commit time, and abort.) The relaxed STM buffers relaxed stores until coor-
dination responses have been received (i.e., RT’s default behavior), providing opacity of transac-
tional updates. Before a transaction commits, it waits for coordination responses so it can validate
all relaxed loads and perform any outstanding relaxed stores.

Relaxed loads. A requesting thread reqT performs a relaxed load when it reads from an object o

in the WrExInt
reqT or RdExInt

reqT state. reqT first checks its store buffer for the value (only if the object’s

state is WrExInt
reqT). If not found, then reqT performs the load—but responding thread(s) may be

simultaneously writing to o, potentially violating serializability. reqT thus logs the loaded location
and value in a read validation log.

When reqT receives the response for o, it validates all entries in the read validation log against
o’s current value(s), as the following pseudocode shows:

foreach (addr, value) in readValidationLog

if (*addr != value) abortTxn();

For every field or array element of o in the read validation log, the current value must match the
log’s value. This logic makes sense as follows. The responding thread responded at some safe point
where it performed conflict detection (and potentially conflict resolution). Validating the loaded
value ensures that the values that were read previously for o are the same as if the values had
all been read at the responding thread’s responding safe point. Even if another thread changed a
location to a different value and back to the original value (i.e., the “ABA problem”), the transaction
is still serializable as long as its read(s) are consistent with the commit-time value, as for value
validation in NOrec (Dalessandro et al. 2010). If validation fails, then reqT must abort its current
transaction. (If respT responds implicitly, then it performs the above work on behalf of reqT.)

Relaxed stores. A requesting thread reqT defers a relaxed store by buffering its location (address)
and value in the store buffer, which is analogous to the redo log used by STMs that use lazy
versioning (Harris et al. 2010). After reqT receives all responses for o, it performs the store(s) for
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o from the store buffer—and also logs the store(s) in the undo log. (If respT responds implicitly,
then it performs all of these actions on behalf of reqT.)

Commit and abort. Before a transaction commits or aborts, it waits for all outstanding responses,
in order to validate loads and perform outstanding relaxed stores. Unlike our general RT design, for
the relaxed STM, RT does not allow loads by T to objects in intermediate states other than WrExInt

T

and RdExInt
T (loads must wait for a state change); supporting loads from other states would require

a mechanism for eventually changing the state to WrExT, RdExT, or RdSh to validate reads before
commit.

Guaranteeing progress. The optimistic STM guarantees progress by detecting all conflicts eagerly
and then aborting the younger transaction (Spear et al. 2009; Zhang et al. 2015). However, the
relaxed STM cannot guarantee progress, since any transaction that fails read validation must abort.
Other mixed-mode STMs have similarly lacked progress guarantees (Harris et al. 2006; Saha et al.
2006) (fully lazy STMs such as NOrec (Dalessandro et al. 2010) can ensure progress easily). Standard
techniques such as exponential backoff can help to alleviate livelock. For the relaxed STM, there
exists a simple (unimplemented) solution (which resembles solutions from prior work (Ni et al.
2008; Sonmez et al. 2009): If a transaction repeatedly fails read validation, then it falls back to use
strict dependence tracking, guaranteeing it will commit (at least once it becomes oldest).

Correctness. At a high level, the relaxed STM provides serializability by guaranteeing that all of a
committing transaction’s operations appear as though they happened instantaneously at commit
time. For conflicting accesses handled by optimistic tracking, eager conflict detection and resolu-
tion guarantee that conflicting accesses between the committing transaction’s accesses and com-
mit time will be detected and resolved. (The relaxed STM uses the same mechanism for relaxed
stores but defers making the store visible until relaxed coordination has finished.) For relaxed
loads, commit-time value validation ensures that each value from a relaxed load is consistent with
the commit-time value of the memory location.

Semantics. Lazy read validation can lead to so-called zombie transactions whose behavior is im-
possible in any serializable execution (Harris et al. 2010). In managed languages such as Java, zom-
bies are not a serious problem, because memory and type safety are preserved (Menon et al. 2008;
Dalessandro and Scott 2012). Targeting a native language such as C++ would require additional
support to provide sandboxing of zombie transactions (Dalessandro and Scott 2012). Another issue
is that zombie transactions can get stuck in infinite loops that are impossible in any serializable
execution. The relaxed STM cannot experience this issue, because it validates relaxed loads within
a bounded amount of time.

Comparison with prior work. Relaxed loads and stores in the relaxed STM are, in essence, the
same as lazy mechanisms employed by some STMs (e.g. Spear et al. (2009), Dalessandro et al.
(2010), Dragojević et al. (2009), Zhang et al. (2015), Olszewski et al. (2007), Saha et al. (2006), and
Harris et al. (2006)). Some STMs have even combined lazy and eager mechanisms, by using eager
concurrency control for writes and lazy validation for reads (Saha et al. 2006; Harris et al. 2006).
However, the relaxed STM combines eager and lazy concurrency control in a novel way, using
eager and lazy concurrency control for non-conflicting and conflicting accesses, respectively.

5 IMPLEMENTATION

We have implemented HT and RT, and the hybrid recorder and replayer, hybrid RS enforcer, re-
laxed recorder, and relaxed STM in Jikes RVM 3.1.3 (Alpern et al. 2000, 2005), a Java virtual machine
that performs competitively with commercial JVMs (Biswas et al. 2015). Since HT and RT are in
separate branches of our code base, we refer to HT and hybrid runtime support as one implemen-
tation and to RT and relaxed runtime support as the other implementation.
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We have made our implementations publicly available on the Jikes RVM Research Archive. Our
implementations build on publicly available implementation of pessimistic and optimistic track-
ing (Bond et al. 2013), the optimistic recorder and replayer (Bond et al. 2015), the optimistic RS
enforcer (Sengupta et al. 2015), and the optimistic STM (Zhang et al. 2015). Our implementations
reuse features of existing implementations as much as possible.

By targeting a managed language, our implementations can piggyback on existing language im-
plementation features. Notably, coordination piggybacks on the safe point mechanism that com-
monly exists in managed language implementations. An implementation for a native language
would need to add support for safe points.

The implementations modify Jikes RVM’s dynamic just-in-time compilers to insert instrumen-
tation before every heap memory access, PSRO, and safe point in the application and Java libraries.

Since x86-64 support in Jikes RVM is still a work in progress, our implementation targets the IA-
32 platform. The HT implementation adds two 32-bit words to each (scalar and array) object and to
each static field: one for last-access state and another for the adaptive policy’s profile information.

For exclusive states (WrEx*
T and RdEx*

T), the state word encodes T’s (8-byte-aligned) address and
uses remaining bits to differentiate states (e.g., pessimistic versus optimistic; WrEx versus RdEx).

For RdSh*
c states, the bits encode c and the read-lock count and differentiate pessimistic versus

optimistic. The RT implementation uses the same state model as optimistic tracking, using one
32-bit word for each object and for each static field.

HT maintains a per-thread lock buffer and read set to support deferred unlocking of pessimistic
states (Section 3.1.2). The HT implementation uses a sequential store buffer for the lock buffer and
a lightweight hash table for the read set to support efficient lookups.

RT maintains each thread’s store buffer as a sequential store buffer. Lookup time (by relaxed
loads) is linear in the size of the buffer; however, the buffer size is equal to the number of relaxed
stores in a synchronization-free region, which is small in practice. The relaxed STM logs relaxed
loads (addresses and values) in per-thread sequential store buffers.

Although HT and RT are potentially complementary, we have not endeavored to combine them
together, due to the complexity and challenges of doing so. For example, combining them would
require resolving a complex mismatch between pessimistic and relaxed tracking—more complex
than the mismatch between pessimistic and (strict) optimistic tracking. Furthermore, designing
correct runtime support would be more complicated than for HT or RT alone.

Extraneous contention in HT. Due to limited bit patterns available in a metadata word, the proto-
type HT implementation omits the WrExRLock

T state: A read to a WrExPess
T object triggers a transition

to WrExWLock
T . The implementation could avoid this limitation with more engineering effort, e.g.,

by encoding an identifier for T, rather than T’s address, for WrExPess
T and RdExPess

T states.
Thus, the implementation may encounter pessimistic contention even in the absence of object-

level data races. Suppose T1 reads an object in WrExPess
T1 state, transitioning the state to WrExWLock

T1 .
T2 then reads the object, triggering a pessimistic contended transition. However, T1 has only read

the object since its last PSRO, that is, no object-level data race exists in this case.
To measure potential costs incurred by triggering unnecessary coordination, we implemented

and evaluated an alternate configuration in which a read of an object in WrExPess
T1 state by T1

triggers a transition to RdExRLock
T1 . This configuration triggers coordination only when object-level

data races exist, but it loses information about T1’s previous write to the object, making it
unsuitable for runtime support that needs to detect cross-thread dependencies soundly. This
unsound configuration provided no performance benefit, indicating that the default configuration
is not encountering significant spurious contention in our experiments.
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6 EVALUATION

This section evaluates the runtime characteristics and performance of HT and RT, compared with
pessimistic and optimistic tracking alone. It also compares the performance of the runtime support
based on HT and RT, with the corresponding optimistic versions.

6.1 Methodology

Benchmarks. The experiments execute the following benchmarks:

—Benchmarked versions of large, real programs: the DaCapo benchmarks, versions 2006-10-
MR2 and 9.12-bach (2009) (Blackburn et al. 2006), excluding single-threaded programs and
programs that Jikes RVM cannot execute

—Business logic benchmarks: fixed-workload versions of SPECjbb2000 and SPECjbb20058

—Transactional benchmarks: the STAMP benchmarks (Cao Minh et al. 2008), ported to Java,
providing six working programs (Demsky and Dash 2010; Korland et al. 2010; Zhang et al.
2015).

The original RT article includes results for additional benchmarks (Zhang et al. 2016), which this
article omits.

Experimental setup. For each implementation, we build a high-performance configuration
(FastAdaptiveGenImmix) of Jikes RVM. Each performance result is the median of at least 20 trials.
We also show the mean, as the center of 95% confidence intervals. Each reported statistic is the
mean from five statistics-gathering runs.

Platform. Experiments execute on a machine with 4 Intel Xeon E5-4620 8-core processors with
hyperthreading disabled (32 cores total) running Linux 2.6.32.

6.2 Evaluating Hybrid Tracking

HT’s experiments use the following adaptive policy parameter values: Cutoffconfl = 4, Kconfl = 200,

Inertia = 100. As explained earlier in Section 3.4, we use a low value for Cutoffconfl. We found that

larger values of Cutoffconfl hurt the performance of avrora9 but otherwise have little impact (results

not shown). We also found that performance is not very sensitive to the other parameters; various
values for Kconfl (20–1,600) and Inertia (20–1,600) are effective (results not shown).

6.2.1 Runtime Characteristics. Table 2 counts state transitions under HT. The table breaks down
Optimistic transitions into Same state and Conflicting transitions, which have significantly different
costs (Section 2.2). For comparison, transitions triggered under optimistic tracking alone are shown
in parentheses.

The Conflicting column measures how well the adaptive policy achieves its primary goal of
reducing conflicting transitions. The reduction is substantial for high-conflict programs: 43–98%
for hsqldb6, xalan6, avrora9, pmd9, xalan9, and pjbb2005. HT provides little or no improvement
for low-conflict programs—but they incur low coordination costs anyway.

The Same state column measures the downside of transitioning to pessimistic states: Some tran-
sitions that would have been optimistic same-state become pessimistic. Only a small fraction of
same-state transitions become pessimistic, because the adaptive policy identifies pessimistic ob-
jects to transition back to optimistic states, based on accurate profiling of pessimistic objects.

As the table shows, the adaptive policy causes more same-state than conflicting transitions to
become pessimistic (compared with optimistic tracking alone). However, this result does not imply

8http://www.spec.org/jbb200{0,5}, http://users.cecs.anu.edu.au/∼steveb/research/research-infrastructure/pjbb2005.
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Table 2. State Transitions for HT and Optimistic Tracking

Optimistic transitions Pessimistic transitions Opt. to Pess.
Same state Conflicting Uncont. %Reentr. Contended Pess. to Opt.

eclipse6 (1.2 × 1010) 1.2 × 1010 (1.3 × 105) 1.3 × 105 1.5 × 106 32% 1.3 × 102 1.2 × 102 1.1 × 102

hsqldb6 (6.1 × 108) 6.1 × 108 (9.2 × 105) 5.2 × 105 4.7 × 106 64% 9.0 × 102 5.1 × 101 0–1
lusearch6 (2.4 × 109) 2.3 × 109 (4.4 × 103) 4.3 × 103 2.6 × 102 30% 0 1.0 × 100 0
xalan6 (1.1 × 1010) 1.0 × 1010 (1.8 × 107) 3.9 × 105 2.1 × 108 52% 1.5 × 101 5.4 × 102 1.0 × 102

avrora9 (6.0 × 109) 6.0 × 109 (6.0 × 106) 2.7 × 106 8.4 × 106 17% 8.0 × 105 1.0 × 105 1.2 × 102

jython9 (5.1 × 109) 5.1 × 109 (6.7 × 101) 7.3 × 101 0 0% 0 0 0
luindex9 (3.4 × 108) 3.4 × 108 (3.7 × 102) 3.8 × 102 0 0% 0 0 0
lusearch9 (2.3 × 109) 2.3 × 109 (2.8 × 103) 2.3 × 103 3.9 × 103 44% 7.6 × 101 1.1 × 101 2.0 × 100

pmd9 (5.6 × 108) 5.5 × 108 (4.2 × 104) 1.7 × 104 1.9 × 105 58% 2.1 × 103 3.0 × 102 5.4 × 101

sunflow9 (1.7 × 1010) 1.7 × 1010 (6.1 × 103) 6.2 × 103 5.9 × 103 92% 3.0 × 101 8.4 × 100 3.6 × 100

xalan9 (1.0 × 1010) 9.8 × 109 (1.7 × 107) 2.9 × 105 1.9 × 108 68% 3.0 × 101 9.0 × 102 1.4 × 102

pjbb2000 (1.7 × 109) 1.7 × 109 (9.5 × 105) 9.3 × 105 2.4 × 106 58% 1.3 × 102 2.4 × 103 1.1 × 103

pjbb2005 (6.6 × 109) 6.5 × 109 (4.4 × 107) 8.4 × 105 1.4 × 108 32% 7.6 × 105 3.2 × 103 3.1 × 103

Note: For comparison, state transitions for optimistic tracking alone are shown in parentheses.

a performance loss, since a conflicting transition costs two to three orders of magnitude more
than a same-state transition. For these programs at least, the adaptive policy achieves its goal
of eliminating most of the conflicting transitions—and thus most of the expensive coordination
overhead—while minimizing pessimistic transitions.

The Pessimistic columns show the number of pessimistic transitions under HT. We note that
deferred unlocking enables a significant fraction of uncontended (Uncont.) accesses to be reen-
trant (Reentr.) and thus avoid atomic operations. Still, a substantial fraction of pessimistic accesses
require atomic operations, so pessimistic tracking alone would be costly even if it used deferred
unlocking.

For most programs, a small fraction of pessimistic accesses are Contended, indicating that de-
ferred unlocking of pessimistic states is generally successful. However, for avrora9 and pjbb2005,
contended transitions are of the same order as optimistic conflicting transitions, so HT still incurs
a considerable amount of coordination. Investigating further, we find that the contention is, as
expected, due to object-level data races. In pjbb2005, contention is caused by true (precise) data
races. In avrora9, contention is caused by both true and false (object-level-only) data races.

The last two columns show transitions between pessimistic and optimistic states. Not all of the
objects that transition from optimistic to pessimistic should ideally be pessimistic. The fraction of
pessimistic objects transitioned back to optimistic states varies significantly across the programs
but is often substantial, indicating that accurate profiling of pessimistic objects is crucial.

6.2.2 Performance of Tracking Alone. Figure 11 compares the performance of HT with pes-
simistic and optimistic tracking alone (without runtime support on top of dependence tracking).
Each bar shows the runtime overhead added over unmodified Jikes RVM. For sunflow9, the mean
overhead is noticeably higher than the median for several configurations. Across many additional
trials, we found that about 15% of the trials run substantially slower than the rest of the trials.

Pessimistic tracking adds 340% overhead on average (excluding sunflow9, the geomean is 210%),
showing that pessimistic states must be applied judiciously. In contrast, the average overhead
of Optimistic tracking is just 28%, but a few high-conflict programs (xalan6 and pjbb2005) incur
substantially higher costs.

HT w/infinite cutoff uses HT but sets Cutoffconfl to∞, so no object ever transitions to pessimistic

states. This configuration measures only the costs, not the benefits, of HT over optimistic tracking.
The average cost over optimistic tracking is 2.3% (of baseline execution time).
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Fig. 11. Runtime overhead of pessimistic and optimistic tracking compared with HT. Each bar is the median

of 20 trials. The intervals are 95% confidence intervals centered at the mean. Overheads exceeding 120% are

labeled using two significant figures.

HT uses the default values of Cutoffconfl and other parameters. HT significantly improves the per-

formance of several programs that perform poorly with optimistic tracking—the same programs
that have many conflicting transitions reduced by the adaptive policy (Table 2). HT reduces over-
head by 63% (65%→ 24%) for xalan6, by 74% (19%→ 5%) for xalan9, and by 45% (110%→ 49%) for
pjbb2005. Despite reducing conflicting transitions significantly for hsqldb6 (Table 2), HT has little
performance impact, because hsqldb6’s conflicting transitions mainly use implicit coordination,
which costs about as much as a pessimistic transition.

Ideal is the overhead of optimistic tracking but without performing coordination for conflicting
transitions. This unsound configuration estimates the cost of all conflicting transitions becoming
pessimistic and all same-state transitions remaining optimistic. It adds 14% on average, represent-
ing an estimated upper bound on the performance that HT might be able to provide.

HT adds 22% average overhead, 21% less than optimistic tracking’s 28% overhead. HT incurs
27% less overhead than HT w/infinite cutoff, recovering most of the overhead difference between
optimistic tracking alone and the ideal, unsound configuration.

While optimistic tracking provides the best performance for low-conflict programs, HT provides
better performance for high-conflict programs. On average, HT adds lower overhead than both
pessimistic and optimistic tracking alone.

Many of the programs we evaluate perform relatively little shared-memory communica-
tion (Kalibera et al. 2012). These programs may or may not accurately represent all real-world
parallel programs in the wild. Because of these programs’ low average communication, optimistic
tracking performs well on average, leaving little room for HT to improve. Nevertheless, only HT
can scale to diverse communication patterns: It helps cases for which optimistic tracking performs
poorly, without harming cases for which optimistic tracking performs well.

6.2.3 Limit Study for the Adaptive Policy’s Per-Object Policy. To evaluate whether per-object
profiling identifies most optimistic conflicting transitions in advance, we perform a limit study on
optimistic tracking alone. Figure 12 plots a cumulative distribution of the number of optimistic
conflicting transitions (explicit coordination only) triggered by each object. For each point (x ,y),
y counts total conflicting transitions—as a percentage of all accesses—involving objects that have
(so far) triggered at most x conflicting transitions. For example, (4, 0.05%) means that 0.05% of all
accesses triggered conflicting transitions that were the first, second, third, or fourth conflicting
transition triggered by the accessed object. The maximum y value for each program is its overall
rate of conflicting transitions (explicit coordination only).

The plot shows that, at least for these programs, each object’s first few conflicting transitions
together constitute an insignificant fraction of overall program accesses. For high-conflict pro-
grams, most conflicting transitions are to objects that have triggered many conflicting transitions
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Fig. 12. Cumulative distribution of conflicting transitions (explicit coordination only) triggered per object for

optimistic tracking. Both axes use a logarithmic scale. The legend sorts programs by their maximum y-axis

value. Three programs have a conflict rate <0.0001% and are excluded.

Fig. 13. runtime overhead of optimistic and hybrid runtime support.

(avrora9 is an exception). For low-conflict programs, the overall conflict rate is low, so conflicting
transitions are negligible. Thus, per-object profiling can “catch” most conflicting accesses, leaving
little additional opportunity for aggregate profiling.

6.2.4 Performance of Runtime Support. This section compares optimistic and hybrid versions
of the dependence recorder and RS enforcer. We have not implemented or evaluated pessimistic

runtime support, since pessimistic tracking alone is slower than both optimistic and hybrid runtime
support.

Dependence recorder. Figure 13(a) shows the performance of the optimistic and hybrid depen-
dence recorders. HT improves the recorder’s performance significantly for the high-conflict pro-
grams xalan6, xalan9, and pjbb2005 and incurs modest overhead for low-conflict programs. On
average, it reduces overhead by 11% (from 46% to 41%). While the hybrid recorder triggers less
coordination than the optimistic recorder, it still detects and records the same number of cross-
thread dependencies as the optimistic recorder does. This fact explains why the hybrid recorder’s
improvement over the optimistic recorder is smaller than for HT over optimistic tracking alone.

Figure 13(b) shows the performance of optimistic and hybrid replayers. The optimistic replayer

is not fully robust: It successfully replays 11 of 13 programs (failing on eclipse6 and xalan9) (Bond

ACM Transactions on Parallel Computing, Vol. 4, No. 2, Article 9. Publication date: August 2017.



Hybridizing and Relaxing Dependence Tracking for Efficient Parallel Runtime Support 9:29

Fig. 14. Runtime overhead of tracking alone on microbenchmarks.

et al. 2015). The optimistic replayer adds 20% overhead on average—lower than the optimistic
recorder—because it is cheaper to replay known dependencies than record unknown dependencies.
The replayer outperforms the baseline substantially for pjbb2005. This result is not an experimental
anomaly; the replayer elides program synchronization operations and replays only the recorded
dependencies, so it can outperform baseline execution for programs dominated by coarse-grained,
overly conservative synchronization.

The hybrid replayer successfully replays all 11 programs that the optimistic replayer can replay.
The hybrid replayer adds 24% overhead on average, slower than the optimistic replayer, due to the
cost of maintaining the per-thread release counter, as well as the fact that HT cannot reduce the
number of replayed cross-thread dependencies. Overall, HT improves record time and degrades
replay time—a worthwhile tradeoff, since (1) optimizing record is more important since it is usually
slower than replay and (2) replay performance is not important in all settings (e.g., offline replay).

Region serializability enforcer. Figure 13(c) shows the overhead of enforcing SBRS using opti-
mistic tracking versus HT. The hybrid enforcer substantially improves the performance of xalan6,
xalan9, and pjbb2005. This reduction is similar to the reduction between hybrid and optimistic
tracking alone—which is unsurprising since the hybrid enforcer employs HT in essentially the
same way as the optimistic enforcer employs optimistic tracking. On average, the hybrid enforcer
reduces overhead by 13% over the optimistic enforcer (from 39% to 34%).

The performance story for runtime support is similar to the story for dependence tracking alone:
Hybridizing pessimistic and optimistic tracking overcomes the limitations of both, providing the
best overall performance for a mix of low- and high-conflict programs.

6.2.5 Stress Tests. In addition to large, real programs, we evaluate pessimistic, optimistic, and
hybrid tracking on two microbenchmarks—one well synchronized and one with data races—that
represent extreme, high-conflict cases. Figure 14 shows, for each microbenchmark, the code exe-
cuted by each of eight threads, as well as runtime overhead over the unmodified JVM. Both mi-
crobenchmarks increment a global counter in a loop; syncInc acquires a global lock before every
increment, and racyInc never acquires a lock.

The figure shows that for syncInc, HT significantly reduces overhead relative to optimistic
tracking (84% versus 1200%), eliminating most coordination thanks to object-level data race free-
dom. For this program, HT essentially mimics pessimistic tracking by using pessimistic transitions.
However, HT incurs more overhead in order to defer unlocking states and to perform profiling.
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In contrast, racyInc represents a worst case for HT, since almost all conflicting accesses are
involved in data races. HT adds 4,300% overhead, because threads repeatedly trigger coordination
to perform pessimistic contended transitions. On further investigation, we find that although only
24% of memory accesses perform pessimistic contended transitions, most of these accesses trigger
coordination more than once. HT could alleviate this deficiency by modifying the adaptive policy
to transition pessimistic objects back to optimistic states if they trigger coordination frequently.

Pessimistic and optimistic tracking both add about 1,200% overhead for racyInc; this similar-
ity is initially surprising considering that racyInc executes many conflicting accesses, which are
typically more expensive for optimistic tracking than for pessimistic tracking. We find that in opti-
mistic tracking, only 8.5% of all accesses trigger conflicting transitions, because a thread that locks
a state can perform several same-state transitions before another thread initiates a conflicting tran-
sition. In contrast, in pessimistic tracking, another thread tries to lock a state more quickly, leading
to more remote cache misses: 26% of pessimistic tracking’s accesses lock a state with a different
thread than the previous access.

Optimization opportunity. When investigating these performance results in depth, we discov-
ered an optimization opportunity that improves the performance of the optimistic tracking im-
plementation. In particular, releasing a “fat” program lock (Bacon et al. 1998) can incur significant
latency. Making a fat lock release operation be a blocking safe point reduces the overhead of op-
timistic tracking to 22%. This optimization turns many explicit coordination requests to implicit,
significantly reducing the runtime overhead of high-conflict programs such as xalan6, avrora9,
xalan9, and pjbb2005. Even with this optimization, explicit coordination is still expensive in opti-
mistic tracking. However, the average performance of HT and RT is roughly the same as optimistic
tracking with this optimization. On top of this optimization, HT can further improve the perfor-
mance of several high-conflict programs, and RT is still effective at reducing the cost of explicit
coordination. The experiments in this article (and in our prior work (Cao et al. 2016; Zhang et al.
2016)) do not include this optimization.

6.3 Evaluating Relaxed Tracking

This section evaluates the performance of RT alone, RT’s runtime characteristics, and the per-
formance of relaxed runtime support, compared with optimistic tracking and optimistic runtime
support.

6.3.1 Performance of Tracking Alone.

Measuring the problem. We first measure the cost of optimistic tracking, as well as the maxi-
mum benefit that can be obtained from optimizations. Figure 15 shows runtime overhead of three
configurations over an unmodified JVM. Optimistic tracking tracks dependencies strictly and adds
25% overhead on average. Its overhead varies considerably across the evaluated programs, since
the overhead is closely linked to the fraction of accesses that trigger coordination using explicit
requests, which is the main cost of tracking dependencies.

Ideal is an unsound configuration that eliminates most of the cost of strict coordination. In this
configuration, after a thread sends an explicit request, it continues execution without waiting for
any response. Responding threads in turn ignore requests. (A minor difference between this con-
figuration and the Ideal configuration in Figure 11 is that this configuration still performs implicit
coordination.) This configuration attempts to estimate an upper bound on the performance that
RT might be able to provide. On average, Ideal adds 14% overhead—a little more than half of the
overhead added by the sound configuration.

The remaining costs are due to fast-path instrumentation at every access, as well as other
transitions, including conflicting transitions that trigger coordination using implicit requests. In
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Fig. 15. Runtime overhead added to an unmodified JVM by capturing dependencies using (1) optimistic

tracking, compared with (2) RT and (3) an ideal, unsound configuration that eliminates coordination latency.

Fig. 16. Speedup of RT relative to optimistic tracking. Ideal is an unsound configuration that provides an

upper bound on RT’s performance.

addition, although requesting threads do not wait for responses and responding threads ignore
requests, Ideal incurs remote cache misses by sending explicit requests.

RT’s effectiveness at hiding coordination costs. The configuration RT (no stall at release) in Fig-
ure 15 is relaxed tracking using the second optimization from Section 4.1.3. Its average overhead
over baseline execution is 24%, a small reduction from optimistic tracking’s 25% overhead. As we
show later, although RT hides the latency of explicit coordination, it changes the balance of ex-
plicit versus implicit coordination and incurs other costs that together cancel out its performance
improvement on explicit coordination. We note that RT could still significantly outperform opti-
mistic tracking in some synthetic high-conflict programs that are designed to stress multithreaded
execution scenarios (results available in the original RT article (Zhang et al. 2016)).

Figure 16 is a speedup graph (higher is better) that shows the same configurations as Figure 15
plus two additional RT configurations. The RT configurations, which are all sound, are as follows:

—RT (stall at release) – The default design from Section 4.1. Threads wait at PSROs for all
outstanding relaxed stores.

—RT (defer release) – The first optimization described in Section 4.1.3. At a lock release, a
thread defers the lock release if there are outstanding relaxed stores.
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—RT (no stall at release) – The second optimization described in Section 4.1.3 (and also shown
in Figure 15). At a lock release, a thread continues execution even if there are outstanding
relaxed stores. However, no thread except T can read from an object in WrExInt

T state.

The three RT configurations offer minimal average speedup over optimistic tracking (1.01× at
the most). They do not help much with the gap between optimistic tracking and Ideal for the
high-conflict programs (hsqldb6, benchxalan6, avrora9, xalan9, and pjbb2005). As we show later,
RT changes the balance of explicit versus implicit coordination requests (relative to optimistic
tracking) by causing threads to spend more time executing code instead of blocking at safe points.
This change cancels out RT’s potential performance benefits for these programs, and it represents
a challenge for future work. Another significant source of RT overhead is bookkeeping costs: Its
queue representation leads to more costs than for optimistic tracking, and it performs additional
work to maintain relaxed events.

The RT (defer release) configuration does not improve performance on average (nor significantly
for any individual program) compared with the RT (stall at release). Although deferring lock re-
lease operations has the potential to hide coordination latency, it incurs two additional costs. First,
deferring releases incurs additional bookkeeping costs. Second, deferring releases often changes
the balance between explicit and implicit requests triggered for coordination, since threads are
more likely to be executing code rather than blocked at release operations waiting for coordina-
tion responses. These factors are enough to outweigh any potential benefit provided by deferring
releases.

Similarly, the RT (no stall at release) configuration helps hide latency, but it introduces another
source of latency: Any thread other than T must wait to read an object locked in WrExInt

T state.
On average, these factors cancel each other, so RT (no stall at release) provides almost no average
benefit over RT (stall at release).

6.3.2 Runtime characteristics. Next we focus on understanding factors contributing to the per-
formance results. Table 3 reports runtime statistics for RT (no stall at release) and optimistic
tracking.

For each type of tracking, State transitions counts how many accesses execute instrumenta-
tion that requires either no state change (Same state) or a Conflicting transition that triggers
coordination. An interesting phenomenon is that RT sometimes reduces how many conflicting
transitions occur, relative to optimistic tracking. This phenomenon occurs because of cases in
which an object is highly contended, and two or more threads transfer its ownership in quick
succession. When using optimistic tracking, a thread must wait for coordination at each access,
enabling another thread to make progress and trigger coordination for the next access to the
object, leading to many conflicting transitions. In contrast, when using RT—particularly when
executing past release operations as permitted by the RT no stall at release configuration—a thread
is more likely to perform consecutive relaxed accesses to a contended object, leading to fewer
conflicting transitions, compared with optimistic tracking.

The Coord. requests columns count explicit and implicit requests, which can sum to more than
Conflicting transitions, because RdSh-to-WrEx transitions involve multiple requests. Programs
with more explicit requests generally have higher coordination overhead and can benefit more
from RT.

The Coord. responses columns tally RT responses. Each sum equals the number of explicit re-
quests, since there is one response for every explicit request. Since explicit responses do not incur
latency, the ratio of explicit to implicit responses does not affect performance significantly.

The last two columns count relaxed accesses. While some of these accesses occur immediately
after coordination requests in a thread’s execution, others are repeat accesses to the same memory

ACM Transactions on Parallel Computing, Vol. 4, No. 2, Article 9. Publication date: August 2017.



Hybridizing and Relaxing Dependence Tracking for Efficient Parallel Runtime Support 9:33

T
a
b

le
3.

R
u

n
ti

m
e

C
h

a
ra

ct
er

is
ti

cs
o
f

O
p

ti
m

is
ti

c
(i

.e
.,

S
tr

ic
t)

T
ra

ck
in

g
a
n

d
R

el
a
xe

d
T

ra
ck

in
g

O
p

ti
m

is
ti

ct
ra

ck
in

g
R

e
la

x
e
d

tr
a

ck
in

g

S
ta

te
tr

a
n

si
ti

o
n

s
C

o
o

rd
.
re

q
u

e
st

s
S

ta
te

tr
a

n
si

ti
o

n
s

C
o

o
rd

.
re

q
u

e
st

s
C

o
o

rd
.
re

sp
o

n
se

s
R

e
la

x
e
d

a
cc

e
ss

e
s

Sa
m

e
st

at
e

C
o

n
fl

ic
ti

n
g

E
x
p

li
ci

t
Im

p
li

ci
t

Sa
m

e
st

at
e

C
o

n
fl

ic
ti

n
g

E
x
p

li
ci

t
Im

p
li

ci
t

E
x
p

li
ci

t
Im

p
li

ci
t

R
ea

d
W

ri
te

ec
li

p
se

6
1
.2
×

10
10

1
.4
×

10
5
(<

0
.0

1%
)

1
.6
×

10
4

2
.9
×

10
5

1
.2
×

10
10

1
.4
×

10
5
(<

0
.0

1%
)

1
.1
×

10
4

2
.6
×

10
5

9
.6
×

10
3

1
.4
×

10
3

1
.4
×

10
4

4
.8
×

10
3

h
sq

ld
b

6
6
.2
×

10
8

9
.0
×

10
5
(0
.1

4%
)

3
.5
×

10
4

3
.8
×

10
6

6
.2
×

10
8

9
.0
×

10
5
(0
.1

4%
)

3
.4
×

10
4

4
.4
×

10
6

3
.1
×

10
4

3
.5
×

10
3

4
.7
×

10
4

3
.8
×

10
4

lu
se

a
rc

h
6

2
.4
×

10
9

4
.4
×

10
3
(<

0
.0

1%
)

2
.3
×

10
3

4
.5
×

10
3

2
.4
×

10
9

4
.4
×

10
3
(<

0
.0

1%
)

2
.3
×

10
3

4
.6
×

10
3

8
.8
×

10
2

1
.4
×

10
3

2
.2
×

10
3

2
.1
×

10
3

xa
la

n
6

1
.1
×

10
10

1
.9
×

10
7
(0
.1

7%
)

1
.3
×

10
7

5
.9
×

10
6

1
.1
×

10
10

1
.9
×

10
7
(0
.1

7%
)

1
.4
×

10
7

5
.2
×

10
6

1
.3
×

10
7

6
.3
×

10
5

1
.6
×

10
7

1
.8
×

10
7

a
vr

o
ra

9
6
.1
×

10
9

5
.9
×

10
6
(0
.0

97
%

)
4
.1
×

10
6

1
.8
×

10
7

6
.1
×

10
9

5
.7
×

10
6
(0
.0

93
%

)
2
.8
×

10
6

1
.4
×

10
7

2
.2
×

10
6

5
.5
×

10
5

2
.1
×

10
6

1
.9
×

10
6

jy
th

o
n

9
5
.1
×

10
9

6
.6
×

10
1
(<

0
.0

1%
)

1
.8
×

10
1

1
.5
×

10
0

5
.1
×

10
9

6
.2
×

10
1
(<

0
.0

1%
)

1
.5
×

10
1

4
.5
×

10
0

1
.3
×

10
1

2
.0
×

10
0

2
.3
×

10
1

0
lu

in
d

ex
9

3
.5
×

10
8

3
.7
×

10
2
(<

0
.0

1%
)

1
.5
×

10
1

3
.3
×

10
2

3
.5
×

10
8

3
.7
×

10
2
(<

0
.0

1%
)

1
.2
×

10
1

3
.3
×

10
2

9
.5
×

10
0

3
.0
×

10
0

1
.9
×

10
1

2
.5
×

10
0

lu
se

a
rc

h
9

2
.4
×

10
9

2
.9
×

10
3
(<

0
.0

1%
)

4
.6
×

10
3

4
.4
×

10
3

2
.4
×

10
9

2
.9
×

10
3
(<

0
.0

1%
)

5
.0
×

10
3

3
.3
×

10
3

1
.3
×

10
3

3
.7
×

10
3

6
.4
×

10
3

4
.1
×

10
2

p
m

d
9

5
.7
×

10
8

4
.4
×

10
4
(<

0
.0

1%
)

3
.1
×

10
4

5
.3
×

10
4

5
.7
×

10
8

4
.3
×

10
4
(<

0
.0

1%
)

2
.7
×

10
4

4
.9
×

10
4

2
.0
×

10
4

6
.9
×

10
3

2
.5
×

10
4

3
.4
×

10
4

su
n

fl
o
w

9
1
.7
×

10
10

1
.4
×

10
4
(<

0
.0

1%
)

1
.5
×

10
4

7
.6
×

10
3

1
.7
×

10
10

9
.3
×

10
3
(<

0
.0

1%
)

9
.6
×

10
3

8
.7
×

10
3

3
.3
×

10
3

6
.3
×

10
3

2
.4
×

10
5

8
.4
×

10
3

xa
la

n
9

1
.0
×

10
10

1
.8
×

10
7
(0
.1

8%
)

9
.7
×

10
6

8
.7
×

10
6

1
.0
×

10
10

2
.0
×

10
7
(0
.2

0%
)

1
.3
×

10
7

7
.1
×

10
6

1
.3
×

10
7

6
.4
×

10
5

2
.0
×

10
7

2
.1
×

10
7

p
jb

b
20

00
1
.7
×

10
9

9
.5
×

10
5
(0
.0

55
%

)
6
.2
×

10
4

9
.0
×

10
5

1
.7
×

10
9

9
.5
×

10
5
(0
.0

55
%

)
6
.1
×

10
4

9
.0
×

10
5

5
.7
×

10
4

3
.5
×

10
3

2
.3
×

10
5

9
.7
×

10
4

p
jb

b
20

05
6
.6
×

10
9

4
.6
×

10
7
(0
.6

9%
)

3
.2
×

10
7

5
.7
×

10
7

6
.5
×

10
9

4
.1
×

10
7
(0
.6

1%
)

2
.5
×

10
7

6
.2
×

10
7

1
.9
×

10
7

5
.5
×

10
6

1
.2
×

10
7

1
.6
×

10
7

ACM Transactions on Parallel Computing, Vol. 4, No. 2, Article 9. Publication date: August 2017.



9:34 M. Cao et al.

Fig. 17. runtime speedup of the relaxed dependence recorder over the optimistic dependence recorder.

location or loads from objects for which some other thread has initiated coordination. Due to these
cases, relaxed accesses can outnumber conflicting transitions. On the other hand, conflicting tran-
sitions can outnumber relaxed accesses, since an implicit request does not lead to a relaxed access.

6.3.3 Performance of Runtime Support. This section evaluates whether RT can benefit runtime
support that detects cross-thread dependencies (dependence recorder) and controls cross-thread
dependencies (STM).

Dependence recorder. Figure 17 shows the performance of the optimistic and relaxed recorders.
Not surprisingly, the performance story for the recorders is similar to the story for tracking de-
pendencies alone. On average, the RT recorder is 1.06× faster than the optimistic recorder.

We note that although RT can hide coordination latency, the relaxed recorder still needs to
record each happens-before edge. Some relaxed loads can avoid conflicting transitions and coor-
dination entirely, but the recorder must log each of the loaded values. The relaxed recorder thus
often logs more than the optimistic recorder. Notably, the relaxed recorder’s log size is about 2× the
optimistic recorder’s for lusearch6, xalan6, and xalan9 (results not shown). For all other programs,
the relaxed recorder logs less than 50% more than the optimistic recorder.

Software transactional memory. Next we compare the optimistic and relaxed STMs using the
transactional STAMP benchmarks. Figure 18 shows the execution time of the optimistic and re-
laxed STMs. We first note that both STMs typically scale poorly after eight threads: Our platform
has 8 cores per socket, leading to greater inter-thread communication for more than eight threads,
and prior work has found that STAMP has limited scalability (Zyulkyarov et al. 2010).

For genome and vacation, RT reduces overhead for two to eight application threads, but
the benefit decreases with more threads. For genome, the ratio of implicit to explicit requests
increases substantially with more threads (statistics not shown), leading to fewer opportunities
for RT to improve performance. For vacation, the implicit-to-explicit ratio stays fairly constant
across thread counts, but RT’s benefit diminishes, because accesses per thread decrease as threads
increase, leading to less latency per thread for RT to reduce.

Fewer than 0.01% of labyrinth3d’s accesses trigger coordination, so it cannot benefit noticeably
from RT.

For kmeans, intruder, and ssca2, RT provides sustained or increasing benefit over optimistic
tracking for 8 to 32 threads. For these programs, the relaxed STM achieves a significantly lower
rate of aborted transactions than the optimistic STM. The relaxed STM validates relaxed loads at
object field and array element granularity, as opposed to the optimistic STM’s loads, which use
reader locks and read sets at object granularity, leading to more transactional conflicts due to false
sharing—an interesting side effect of supporting relaxed loads. However, direct benefits from RT
are limited, because many transactions are short, and the relaxed STM must wait at transaction
end for all outstanding relaxed accesses (Section 4.3.2).
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Fig. 18. Performance of the optimistic and relaxed STMs.

In summary, RT reduces the cost of tracking dependencies for programs with high coordination
costs, but its benefit is limited by correctness constraints (e.g., limitations on deferring stores past
synchronization) and indirect effects (e.g., increases to the explicit-to-implicit request ratio when
using RT compared with optimistic tracking). Although the relaxed recorder and STM suffer draw-
backs (increased log size and transactional correctness constraints, respectively) that limit the im-
provement somewhat, these results demonstrate the potential of RT to improve the performance
of dependence-tracking-based runtime support.

7 RELATED WORK

This section compares with prior work not covered already.

Program locks. This article focuses on locks that are used by runtime support and are not vis-
ible to programmers. Program locks face similar tradeoffs as pessimistic versus optimistic track-
ing. Notably, biased locking avoids atomic operations for repeated lock acquisitions by the same
thread, requiring coordination when another thread acquires the lock (Russell and Detlefs 2006;
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Kawachiya et al. 2002; Burrows 2004; Vasudevan et al. 2010). A biased lock typically falls back to
an unbiased lock after triggering coordination once.

Adaptive mechanisms. Prior work has used adaptive techniques to combine different kinds of
synchronization. Usui et al. use online profiling and a cost–benefit model to adaptively choose
between lock-based mutual exclusion and STM for enforcing atomicity of critical sections (Usui
et al. 2009). Abadi et al. present an STM that adaptively changes how it detects conflicts for
non-transactional accesses, depending on whether transactions access the same objects as non-
transactional code (Abadi et al. 2009). Dice et al. build a runtime library that supports adaptive
lock elision using hardware transactional memory (HTM) and optimistic software execution (Dice
et al. 2014). Ziv et al. formalize a theory for correctly composing different concurrency control
protocols in programs (Ziv et al. 2015).

Von Praun and Gross introduce a data race detection analysis that uses an optimistic (biased)
for non-shared objects and a pessimistic (unbiased) approach for shared objects (von Praun and
Gross 2001). However, their approach adds high overhead when shared objects are accessed fre-
quently (Bond et al. 2013).

Neamtiu and Hicks introduce “relaxed synchronization” to allow threads to keep executing
while waiting to join a global synchronization barrier (for dynamic software update) (Neamtiu
and Hicks 2009). However, their work is not applicable to tracking dependencies.

Tracking dependencies using commodity hardware. Intel processors now provide best-effort
HTM (Yoo et al. 2013), which could potentially help track dependencies efficiently. However, recent
work suggests that commodity HTM struggles to outperform software-based synchronization if
transactions are short (Matar et al. 2014; Ritson and Barnes 2013; Yoo et al. 2013; Sengupta et al.
2017). Liu et al. show how to record and replay commodity HTM transactions, but the approach
does not support recording and replaying programs in general (Liu et al. 2015).

8 CONCLUSION

This article presents two distinct, software-only approaches that tackle the performance limita-
tions of existing dependence tracking mechanisms. HT uses a hybrid state model and adaptive pol-
icy to combine pessimistic and optimistic tracking and outperform both individually. RT reduces
optimistic tracking’s coordination latency by relaxing the requirement of tracking all dependencies
soundly, allowing coordination latency to overlap with useful program work. We build runtime
support based on HT and RT to demonstrate their potentials. The results show the benefits—and
challenges and limitations—of applying HT and RT to real runtime systems and real applications.
This work advances the state of art in dependence tracking, illuminating future directions for ef-
ficient, software-only parallel runtime support that targets diverse applications.

APPENDIXES

A HYBRID TRACKING’S INSTRUMENTATION PSEUDOCODE

Figure 19 shows the instrumentation added by HT. For simplicity, we only show instrumentation
for a program store. The instrumentation for loads is more complex, because it also handles RdEx∗T
and RdSh∗c states and supports reentrant reader locks.

The fast path (Figure 19(a)) only checks for the WrEx
Opt

T state, since we expect that the majority
of accesses trigger same-state optimistic transitions. The slow path (Figure 19(c)) changes the state
based on HT’s state transitions (Figure 4 and Table 4). The slow path repeatedly reloads and tries
to change the state if an atomic update fails. A contended transition triggers coordination (line 44);
then the slow path retries until the state becomes unlocked, enabling an uncontended transition
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Fig. 19. Instrumentation added by HT for program stores only. (Handling loads is analogous but more

complex.)

(lines 37–42). On a successful transition to a pessimistic state, the instrumentation adds the object
to the per-thread lock buffer (lines 40 and 54).

Figure 19(b) shows the instrumentation at each PSRO and responding safe point. The instrumen-
tation flushes the current thread’s lock buffer by unlocking each object in the buffer, potentially
transferring the object to an optimistic state, according to the adaptive policy (Section 3.4). The
pseudocode shows how to handle objects in WrExWLock

T state only, not other states.

B HYBRID TRACKING’S COMPLETE STATE TRANSITIONS

Table 4 shows all possible transitions for HT’s hybrid state model. Rows above the double line are
pessimistic transitions; rows below are optimistic transitions. The rows labeled Pessimistic unlock

OR Pess→ Opt show transitions for deferred unlocking, which occur at PSROs.
Each thread keeps track of which objects it has read-locked in a per-thread read set, T.rdSet. The

table omits the following details: When T reads an object not in its read set (o � T.rdSet), it adds
the object to its read set: T.rdSet← T.rdSet ∪ {o}. Whenever T flushes its lock buffer, it also clears
its read set: T.rdSet← ∅.
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